Negative regulation of adipogenesis from human mesenchymal stem cells by Jun N-terminal kinase.

Biochem Biophys Res Commun

Graduate School of Life Science, Himeji Institute of Technology, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan.

Published: January 2005

Human mesenchymal stem cells (hMSCs) are capable of differentiating into several cell types including adipocytes, osteoblasts, and chondrocytes, under appropriate culture conditions. We found that SP600125, an inhibitor of Jun N-terminal kinase (JNK), promoted adipogenesis whereas it repressed osteogenesis from hMSCs. SP600125 increased the expression of adipogenic transcription factors, CCAAT/enhancer-binding proteins alpha and beta as well as peroxisome proliferator-activated receptor gamma2, which suggested that the chemical acted on the early steps of transcriptional regulatory cascade in adipogenesis. A gene reporter assay showed that SP600125 and a dominant negative JNK promoted a transcriptional activity dependent on the cAMP-response element (CRE). Thus, JNK represses adipogenesis from hMSCs probably by, at least in part, inhibiting the transactivating function of CRE-binding protein. Another action of JNK, phosphorylation at Ser(307) of insulin receptor substrate-1, was also predicted to contribute to the repression of adipogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2004.11.056DOI Listing

Publication Analysis

Top Keywords

human mesenchymal
8
mesenchymal stem
8
stem cells
8
jun n-terminal
8
n-terminal kinase
8
jnk promoted
8
adipogenesis
5
negative regulation
4
regulation adipogenesis
4
adipogenesis human
4

Similar Publications

Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells.

STAR Protoc

January 2025

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.

View Article and Find Full Text PDF

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma is a prevalent urological malignancy, imposing substantial burdens on both patients and society. In our study, we used bioinformatics methods to select four putative target genes associated with EMT and prognosis and developed a nomogram model which could accurately predicting 5-year patient survival rates. We further analyzed proteome and single-cell data and selected PLCG2 and TMEM38A for the following experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!