Mastering time and space: immune cell polarization and chemotaxis.

Semin Immunol

Department of Immunology and Oncology, Centro Nacional de Biotecnología, Campus Universidad Autónoma de Madrid, E-28049 Madrid, Spain.

Published: February 2005

Many immune cells can detect the direction and intensity of an extracellular chemical gradient, and migrate toward the source of stimulus. This process, called chemotaxis, is essential for immune system function and homeostasis, and its deregulation is associated with serious diseases. Chemotaxis is initiated by chemoattractant binding to heterotrimeric G protein-coupled receptors, which translate the gradients into accurate directional migration. A necessary step in this process is cell polarization, the acquisition of functional and spatial asymmetry. The use of new imaging technologies enables analysis of spatial and temporal changes in the activity of proteins and membrane domains involved in polarization and chemotaxis. We discuss the sometimes contradictory evidence available and the emerging molecular model for immune cell polarity and chemotaxis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.smim.2004.09.005DOI Listing

Publication Analysis

Top Keywords

immune cell
8
cell polarization
8
polarization chemotaxis
8
chemotaxis
5
mastering time
4
time space
4
immune
4
space immune
4
chemotaxis immune
4
immune cells
4

Similar Publications

Background: Metastatic spine tumor surgery (MSTS) is often complex and extensive leading to significant blood loss. Allogeneic blood transfusion (ABT) is the mainstay of blood replenishment but with immune-mediated postoperative complications. Alternative blood management techniques (salvaged blood transfusion [SBT]) allow us to overcome such complications.

View Article and Find Full Text PDF

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

KSHV hijacks the antiviral kinase IKKε to initiate lytic replication.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45.

View Article and Find Full Text PDF

Mast cells, immune sentinels that respond to various stimuli in barrier organs, provide defense by expressing pattern recognition receptors, such as Toll-like receptors (TLRs). They may affect inflammatory responses and wound healing. Here, we investigated the effect of TLR2/6-stimulated mast cells on wound healing in keratinocytes.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!