This study compared in vivo enhancement from four different polymer-encapsulated ultrasound (US) contrast agents. The agents were produced with a rigid shell composed of the biodegradable block copolymer poly[D,L-lactide-co-glycolide] (PLGA) with the lactic and glycolic acid ratios 50:50, 75:25, 85:15 and 100:0 (i.e., increasingly hydrophobic shell compositions). Approximately the same bubble diameter (1.2 microm) and concentration (0.4 g/mL) were obtained for each agent. In four rabbits, audio Doppler signals were acquired from a 10 MHz cuff transducer placed around a surgically exposed vessel (contrast dose: 0.0125 to 0.15 mL/kg). In vivo dose responses were calculated off-line (in dB). Nine rabbit kidneys were imaged during contrast administration (0.1 mL/kg) in power Doppler and grey-scale pulse inversion harmonic (PIHI) modes using an HDI 5000 scanner (Philips Medical Systems, Bothell, WA). Time-intensity curves were produced and the time-to-peak, peak intensity, slope, area under the curve (AUC) and total duration of enhancement for each agent were compared. All agents produced marked Doppler enhancement with increasing duration from the 50:50 agent (48 +/- 10 s) to the 75:25 agent (166 +/- 46 s), the 85:15 agent (403 +/- 83 s) and with the 100:0 agent (603 +/- 93 s) lasting longest (p < 0.02). No other parameters changed significantly, except the AUC of the 85:15 agent, which was greater than that of the 50:50 agent (190.75 vs. 61.58; p = 0.02). The in vivo dose-response curves were similar for all agents, with mean enhancement up to 20.6 +/- 1.11 dB (p = 0.17). In conclusion, contrast duration increases by an order of magnitude as the lactic acid component in the polymer-encapsulated bubbles increases and the shell, thus, becomes increasingly hydrophobic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2004.07.006DOI Listing

Publication Analysis

Top Keywords

agents produced
8
increasingly hydrophobic
8
agent
8
5050 agent
8
8515 agent
8
+/-
5
shell
4
shell type
4
vivo
4
type vivo
4

Similar Publications

Synechococcus is a significant primary producer in the oceans, coexisting with cyanophages, which are important agents of mortality. Bacterial resistance against phage infection is a topic of significant interest, yet little is known for ecologically relevant systems. Here we use exogenous gene expression and gene disruption to investigate mechanisms underlying intracellular resistance of marine Synechococcus WH5701 to the Syn9 cyanophage.

View Article and Find Full Text PDF

Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.

View Article and Find Full Text PDF

Integration of paper-based colorimetric microdevice and magnetic nanoparticles affinity for high-throughput capture of antimicrobial resistance-reversing agent from complex natural products.

Biosens Bioelectron

December 2024

Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China. Electronic address:

Efficient analysis of active ingredient in complex natural products is crucial for drug discovery, but developing a simple method for this is challenging. The discovery of drugs against bacterial resistance is urgent because drug-resistant bacteria produce β-lactamases, which inactivate antibiotics and increase infection risks, particularly the AmpC β-lactamase. Here, an integrated analytical model based on colorimetric sensing and magnetic nanoparticles (MNPs) affinity chromatography was developed for screening AmpC β-lactamase inhibitors.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.

View Article and Find Full Text PDF

Root-knot nematodes (Meloidogyne spp.) are significant pests that cause considerable damage to crops, prompting a need for sustainable control methods. This study evaluated the nematicidal potential of fungal culture filtrates and botanicals as eco-friendly alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!