Infusion of calcium antagonists results in significant increases in sodium excretion, an effect that is exacerbated in hypertensive animals. The mechanism responsible for the increase in sodium excretion has not been elucidated. The purpose of this study was to determine the role of renal interstitial hydrostatic pressure (RIHP) in mediating increases in sodium excretion produced by the calcium antagonist verapamil. Changes in renal hemodynamics and electrolyte excretion were examined in response to an intrarenal infusion of verapamil (100 micrograms/min) in normal dogs and in dogs with angiotensin II-induced hypertension. Infusion of verapamil in normal dogs increased renal blood flow by 18% and had no effect on glomerular filtration rate. Renal vascular resistance and filtration fraction both decreased in response to verapamil. Absolute (5.1 +/- 2.3 to 176 +/- 45.8 mueq/min) and fractional excretion of sodium (0.21 +/- 0.13 to 7.36 +/- 3.12%) also increased significantly. Despite renal vasodilation, the natriuresis was not associated with significant increases in RIHP (6.4 +/- 0.9 to 5.8 +/- 0.9 mmHg). Infusion of verapamil into dogs with angiotensin II hypertension resulted in a natriuresis (4.2 +/- 1.6 to 338.7 +/- 78.3 mueq/min) that was much greater than under normal conditions. Although the renal vasodilation was significantly higher in the angiotensin II-hypertensive dogs, the enhanced natriuresis in these animals was not associated with increases in RIHP. The results of this study indicate that increases in RIHP are not responsible for the natriuresis produced by verapamil in normal or angiotensin II-hypertensive dogs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.1992.262.3.R432 | DOI Listing |
Cureus
December 2024
Gastroenterolgy, Sindh Institute of Urology and Transplantation, Karachi, PAK.
Background Heart failure (HF) is commonly managed by addressing water and sodium (Na) balance, with arterial circulation playing a major role in influencing renal Na and water excretion. Recently, chloride (Cl) has been recognized as an important factor in HF, associated with volume regulation and its modulation of renin-angiotensin-aldosterone system (RAAS) activity through macula densa signaling, which impacts Na retention and neurohormonal activation. Acetazolamide, a carbonic anhydrase inhibitor, can enhance decongestion in HF by increasing urinary Na and Cl excretion when added to loop diuretics, a mechanism supported by prior studies demonstrating improved urine output and decongestion.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.
View Article and Find Full Text PDFKidney Int Rep
January 2025
Department of Cardiovascular Sciences, University of Leicester, Leicester, Leicestershire, UK.
Introduction: Endothelin A (ETA) receptor activation is a driver of proteinuria, kidney inflammation, and fibrosis in IgA nephropathy (IgAN). Atrasentan, a selective ETA receptor antagonist, has potential to reduce proteinuria and preserve kidney function in IgAN. ALIGN (NCT04573478) is a phase 3, randomized, double-blind, placebo-controlled clinical trial of atrasentan in patients with IgAN at high risk of kidney function loss.
View Article and Find Full Text PDFBackground: Hyperkalemia, generally defined as serum potassium levels greater than 5.0 mEq/L, poses significant clinical risks, including cardiac toxicity and muscle weakness. Its prevalence and severity increase in patients with chronic kidney disease (CKD), diabetes mellitus, and heart failure (HF), particularly when compounded by medications like Angiotensin converting inhibitors, Angiotensin receptor blockers, and potassium sparing diuretics.
View Article and Find Full Text PDFJ Chin Med Assoc
September 2024
Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
Background: Many studies have reported the renal outcomes and metabolic consequences after augmentation cystoplasty (AC), however few studies have discussed changes in renal tubular function. The aim of this study was to determine the prevalence of metabolic disturbances, evaluate renal tubular function and 24-hour urine chemistry to evaluate the association between metabolic alterations and urolithiasis after AC.
Methods: We investigated serum biochemistry, blood gas, and 24-hour urinary metabolic profile of children who underwent AC between January 2000 and December 2020.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!