The pharyngeal arches give rise to multiple organs critical for diverse processes, including the thymus, thyroid and parathyroids. Several molecular regulators of thymus and thyroid organogenesis are strikingly conserved between mammals and zebrafish. However, land animals have parathyroids whereas fish have gills. The murine transcription factor Glial cells missing 2 (Gcm2) is expressed specifically in the parathyroid primordium in the endodermal epithelium of the third pharyngeal pouch, and in both mice and humans is required for normal development of parathyroid glands. The molecular regulation of fish gill organogenesis remains to be described. We report the expression of gcm2 in the zebrafish pharyngeal epithelium and a requirement for Hox group 3 paralogs for gcm2 expression. Strikingly, zebrafish gcm2 is expressed in the ectodermal portion of the pharyngeal epithelium and is required for the development of the gill filament buds, precursors of fish-specific gill filaments. This study identifies yet another role for a GCM gene in embryonic development and indicates a role for gcm2 during the evolution of divergent pharyngeal morphologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2004.09.018 | DOI Listing |
Cells
August 2023
Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
Adhesion G protein-coupled receptors (aGPCRs) comprise the second-largest class of GPCRs, the most common target for approved pharmacological therapies. aGPCRs play an important role in development and disease and have recently been associated with the kidney. Several aGPCRs are expressed in the kidney and some aGPCRs are either required for kidney development or their expression level is altered in diseased kidneys.
View Article and Find Full Text PDFAquat Toxicol
December 2019
Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. Electronic address:
Acidification of freshwater ecosystems is recognized as a global environmental problem. However, the influence of acidic water on the early stages of freshwater fish is still unclear. This study focused on the sublethal effects of acidic water on the lateral line system of zebrafish embryos.
View Article and Find Full Text PDFHum Genet
July 2017
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Isolated familial hypoparathyroidism is an extremely rare disorder, which to date has been linked to several loci including mutations in CASR, GCM2, and PTH, as well as a rare condition defined as X-linked recessive hypoparathyroidism, previously associated with a 1.5 Mb region on Xq26-q27. Here, we report a patient with hypocalcemia-induced seizures leading to the diagnosis of primary hypoparathyroidism.
View Article and Find Full Text PDFMol Cell Endocrinol
February 2016
Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan. Electronic address:
In mammals, sodium/hydrogen exchanger (NHE) and sodium-chloride cotransporter (NCC) are expressed in renal tubules, and exhibit functional redundancy and mutual compensation in Na(+) uptake. In teleosts, the gills of the adult and skin of the embryonic stage function as external kidneys, and ionocytes are responsible for ionoregulation in these tissues. NHE- and NCC-expressing ionocytes mutually cooperate to adjust Na(+) uptake, which is analogous to the activity of the mammalian kidney.
View Article and Find Full Text PDFDev Dyn
July 2015
INRA, UR1037 LPGP Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France.
Background: The fish epidermis contains specific cells, or ionocytes, that are specialized in ion transport and contribute to the osmoregulatory function. Besides the zebrafish model, the medaka (Oryzias latipes) has recently emerged as an important model for osmoregulation studies because it possesses a particularly high adaptability to salinity changes. However, hindering the progress of research on embryonic ionocytes is the lack of a comprehensive view of their developmental dynamic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!