A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Compensatory physiological responses to chronic blockade of amino acid receptors during early development in spontaneously active organotypic cerebral cortex explants cultured in vitro. | LitMetric

Paired organotypic explants from rat occipital cortex were cultured for up to three weeks in the presence of selective blockers of amino acid receptor blockers, during which period spontaneous action potential generation was monitored electrophysiologically. In contrast to isolated explants (Corner, M.A., van Pelt, J., Wolters, P.S., Baker, R.E.and Nuytinck, R.H. (2002) Physiological e.ects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks--an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci. Biobehav. Rev., 26: 127-185), which upregulated their initially depressed spontaneous bursting activity only under conditions of N-methyl D-aspartate (NMDA) receptor blockade, cross-innervated co-cultures showed a large degree of functional recovery even when combined NMDA and AMPA receptor blockade was carried out. This compensatory activity could be eliminated by acute addition of a selective kainate receptor blocker to the medium. When kainate along with AMPA and NMDA receptor mediated activity was chronically suppressed, however, considerable functional recovery--in the form of recurrent burst discharges--took place gradually over a period of three weeks in vitro. These spontaneous bursts disappeared rapidly upon treatment with the muscarinic receptor blocker, atropine, but continuous low-level firing emerged at the same time. Similar "tonic" background activity was induced in control cultures as well, but without any noticeable reduction in burst discharges. Co-cultured neocortex explants, in which cyto-morphological maturation proceeds to a far greater degree than in isolated explants (Baker, R.E.and van Pelt, J. (1997) Co-cultured but not isolated cortical explants display normal dendritic development: a longterm quantitative study. Dev. Brain Res., 98: 21-27) are evidently capable of an astonishing degree of functional compensation for loss of excitatory synaptic drive during development. It could be shown, furthermore, that such homeostatic responses are not mediated largely by a weakening of inhibitory mechanisms in the absence of spontaneous firing. Chronic inhibitory synaptic blockade, on the other hand, led to intensified bursting activity which gradually normalized over a 3-week culture period. The cellular basis for this reversal of the disinhibited state, as well as for the residual neuronal firing even after cholinergic mechanisms have been largely eliminated, is at present unknown. The degree to which immature cortical networks attempt to compensate for altered levels of physiological activity, as documented in the present report, is another indication of how important such activity can be for normal development (see Corner, M.A., van Pelt, J., Wolters, P.S., Baker, R.E. and Nuytinck, R.H. (2002) Physiological e.ects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks-an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci. Biobehav. Rev., 26: 127-185).. At the same time, the large variations in overall firing levels and "macro-scale" temporal patterns from culture to culture within a given series, despite all attempts at identical preparation of the explants, can only mean that the "set-points" for such regulation are themselves subject to unknown ontogenetic factors which, apparently, are nonuniformly distributed even within a restricted region of the neocortex. On the other hand, it was striking to note that, regardless of age or treatment, an unexpected degree of consistency in temporal patterning existed at "mini-" and "micro-" time-scales (viz., EEG delta and beta frequency ranges, respectively) even when network bursting tendencies became greatly reduced in favor of tonic firing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0079-6123(04)47018-6DOI Listing

Publication Analysis

Top Keywords

spontaneously active
12
van pelt
12
excitatory synaptic
12
amino acid
8
three weeks
8
isolated explants
8
corner van
8
pelt wolters
8
wolters baker
8
baker reand
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!