Effects of pressure on deuterium isotope effects of yeast alcohol dehydrogenase using alternative substrates.

Arch Biochem Biophys

Division of Pharmaceutical Sciences, School of Pharmacy, 777 Highland Avenue, University of Wisconsin-Madison, Madison, WI 53705, USA.

Published: January 2005

Hydrostatic pressure causes biphasic effects on the oxidation of alcohols by yeast alcohol dehydrogenase as expressed on the kinetic parameter V/K which measures substrate capture. Moderate pressure increases capture by activating hydride transfer, whose transition-state must therefore have a smaller volume than the free alcohol plus the capturing form of enzyme, with DeltaV(double dagger)=-30 mL mol(-1) for isopropanol. A comparison of these effects with those on the oxidation of deutero-isopropanol generates a monophasic decrease in the intrinsic isotope effect; therefore, the volume of activation for the transition-state of deuteride transfer must be even more negative, by 7.6 mL mol(-1). The pressure data extrapolate and factor the kinetic isotope effect into a semi-classical reactant-state component, with a null value of k(H)/k(D)=1, and a transition-state component of Q(H)/Q(D)=4, suggestive of hydrogen tunneling. Pressures above 1.5 kbar decrease capture by favoring a minor conformation of enzyme which binds nicotinamide adenine dinucleotide (NAD(+)) less tightly. This inactive conformation has a smaller volume than active E-NAD(+), with a difference of 74 mL mol(-1) and an equilibrium constant of 93 between them, at one atmosphere of pressure. These results are virtually identical to those obtained with benzyl alcohol and give credence to this method of analysis. Moreover, qualitatively similar results with greater pressure sensitivity but less precision are obtained using ethanol as a substrate, only with pressure driving the value of the isotope effect to a value less than (D)k=1.03 directly, without extrapolation. The ethanol data verify the most surprising finding of these studies, namely that the entire kinetic isotope effect arises from a transition-state phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2004.09.033DOI Listing

Publication Analysis

Top Keywords

yeast alcohol
8
alcohol dehydrogenase
8
effects oxidation
8
smaller volume
8
kinetic isotope
8
pressure
6
isotope
5
effects
4
effects pressure
4
pressure deuterium
4

Similar Publications

Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.

View Article and Find Full Text PDF

Effect of halo-tolerance gene Hal5 on ethanol tolerance of .

BBA Adv

October 2024

Department of Biochemistry, Panjab University, Chandigarh 160014, India.

Hal5 gene is involved in halo-tolerance of during high salt stress. Ethanol stress and high salt stress have similarities, as both decrease the availability of water for cells and strain the osmotic homeostasis across the cell membrane. The Hal5 over-expression strain of yeast has more ethanol tolerance, but the Hal5 null mutant strain also has more ethanol tolerance than the wild-type strain.

View Article and Find Full Text PDF

Experimental Evolution and Hybridization Enhance the Fermentative Capacity of Wild Saccharomyces eubayanus Strains.

FEMS Yeast Res

January 2025

Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.

Lager beer is traditionally fermented using Saccharomyces pastorianus. However, the limited availability of lager yeast strains restricts the potential range of beer profiles. Recently, Saccharomyces eubayanus strains showed the potential to impart novel aromas to beer, with slower fermentation rates than commercial strains.

View Article and Find Full Text PDF

The rate of glucose metabolism sets the cell morphology across yeast strains and species.

Curr Biol

January 2025

Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands. Electronic address:

Yeasts are a diverse group of unicellular fungi that have developed a wide array of phenotypes and traits over 400 million years of evolution. However, we still lack an understanding of the biological principles governing the range of cell morphologies, metabolic modes, and reproductive strategies yeasts display. In this study, we explored the relationship between cell morphology and metabolism in sixteen yeast strains across eleven species.

View Article and Find Full Text PDF

Bioethanol production is one of the key alternatives for fossil fuel use due to climate change. The study seeks to upscale tailor-made onsite enzyme blends for the bioconversion of cassava peels to bioethanol in simultaneous saccharification and fermentation (SSF) process using cassava peels-degrading fungi. The starch and cellulose contents of peels were determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!