The use of biosolids for land restoration and crop production is a potential solution to improve food production worldwide. However, the microbial content usually restricts its application in crops that are consumed uncooked. An alternative practice is their use in floriculture. In this study, the effects of acid treated sludge on the development of marigold (Tagetes erecta) plants were evaluated under green house conditions. Biosolids were applied at the agronomic rate (AR) based on nitrogen requirements of the marigold. In addition, higher rates (10 and 20xAR) were applied to study their effect on the plants. Biosolids were mixed with tepetate (hard volcanic indurate layers). Due to its origin, tepetate lacks nutrients and organic matter to adequately support plant development. The best treatment for marigold development was 10xAR, as plants reached an average height of 107 cm, with a growing speed of 1.01 cm/d, which is 20 times more than the control. Plants that received no biosolids produced 0.25 buds and 0.5 flowers per plant. In contrast, AR and 10xAR showed a production that ranged from 2 to 29 buds/plant and 4 to 15 flowers/plant, respectively. These results indicate the viability of reusing acid treated biosolids to improve marigold development.

Download full-text PDF

Source

Publication Analysis

Top Keywords

acid treated
12
treated biosolids
8
marigold tagetes
8
tagetes erecta
8
marigold development
8
biosolids
6
marigold
5
development
5
application acid
4
biosolids marigold
4

Similar Publications

Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.

View Article and Find Full Text PDF

Buruli Ulcer Transmission: Environmental Pathways and Implications for Dermatologic Care.

Cutis

December 2024

Michelle R. Anthony is from the University of Arizona College of Medicine, Tucson. Christopher Farkouh is from Rush Medical College, Chicago, Illinois. Parsa Abdi is from Memorial University, St. Johns, Newfoundland, Canada. Dr. Khan is from Kyber Teaching Hospital MTI KTH, Peshawar, Pakistan.

Buruli ulcer (BU) is a necrotizing skin and soft tissue disease caused by Mycobacterium ulcerans that is common in hot and humid climates. Mycobacterium ulcerans is a nontuberculous mycobacterium and ubiquitous acid-fast gram-positive bacillus known to thrive in aquatic environments and water insects. The mode of transmission to humans is poorly understood and varies by geography.

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

To undertake a mixed-methodology implementation study to improve the well-being of men with gastrointestinal late effects following radical radiotherapy for prostate cancer. All men completed a validated screening tool for late bowel effects (ALERT-B) and the Gastrointestinal Symptom Rating Score (GSRS); men with a positive score on ALERT-B were offered management following a peer reviewed algorithm for pelvic radiation disease (PRD). Health-related quality of life (HRQoL) at baseline, 6 and 12 months; and healthcare resource usage (HRU) and patient, support-giver, staff experience and acceptability of staff training (qualitative analysis) were assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!