Regulation of iro3 expression in the zebrafish spinal cord.

Dev Dyn

Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA.

Published: January 2005

AI Article Synopsis

  • The study explores how the transcription factor iro3 is expressed and regulated in the spinal cord of zebrafish during development.
  • iro3 is initially found in specific motoneurons but later expands to include all motoneurons and a type of interneuron by 24 hours post-fertilization.
  • The expression of iro3 in different spinal cord regions is independently regulated, with Hedgehog signaling playing a role in repressing its expression in some areas and the Olig2 transcription factor also being necessary for this repression.

Article Abstract

Specification of spinal cord neurons is regulated by several different transcription factors. In this study, we analyze expression and regulation of the transcription factor iro3 in zebrafish spinal cord. In addition to its broad expression in the progenitor domain of intermediate spinal cord, iro3 is also expressed in postmitotic ventral neurons, starting at early somitogenesis stages. Initially, this expression is only in two primary motoneurons, CaP and VaP, but by 24 hr postfertilization, iro3 is expressed by all classes of zebrafish spinal motoneurons as well as by a ventral interneuron called VeLD. iro3 expression in the progenitor domain of intermediate spinal cord is regulated independently from its expression in ventral neurons. Hedgehog (Hh) signaling is unnecessary for iro3 expression in intermediate spinal cord, but it is required to repress iro3 expression in the progenitor domain of ventral spinal cord. We also show that the basic helix-loop-helix transcription factor Olig2 is required for repression of iro3 expression in the progenitor domain of ventral spinal cord. We discuss our findings in the context of previous studies, suggesting that iro3 represses formation of motoneurons and promotes formation of interneurons.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.20215DOI Listing

Publication Analysis

Top Keywords

spinal cord
32
iro3 expression
20
expression progenitor
16
progenitor domain
16
zebrafish spinal
12
intermediate spinal
12
expression
9
spinal
9
cord
8
transcription factor
8

Similar Publications

This study examined the effects of treadmill running (TR) regimens on craniofacial pain- and anxiety-like behaviors, as well as their effects on neural changes in specific brain regions of male mice subjected to repeated social defeat stress (SDS) for 10 days. Behavioral and immunohistochemical experiments were conducted to evaluate the impact of TR regimens on SDS-related those behaviors, as well as epigenetic and neural activity markers in the anterior cingulate cortex (ACC), insular cortex (IC), rostral ventromedial medulla (RVM), and cervical spinal dorsal horn (C2). Behavioral responses were quantified using multiple tests, while immunohistochemistry measured histone H3 acetylation, histone deacetylases (HDAC1, HDAC2), and neural activity markers (FosB and phosphorylated cAMP response element-binding protein (pCREB).

View Article and Find Full Text PDF

Objective: To characterize structural integrity of the lumbosacral enlargement and conus medullaris within one month after spinal cord injury (SCI).

Methods: Lumbosacral cord MRI data were acquired in patients with sudden onset (<7 days) SCI at the cervical or thoracic level approximately one month after injury and in healthy controls. Tissue integrity and loss were evaluated through diffusion tensor (DTI) and T2*-weighted imaging (cross-sectional area [CSA] measurements).

View Article and Find Full Text PDF

Purpose Of The Review: In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia.

View Article and Find Full Text PDF

rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area.

Brain Struct Funct

January 2025

Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.

The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.

View Article and Find Full Text PDF

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!