P80, the HinT interacting membrane protein, is a secreted antigen of Mycoplasma hominis.

BMC Microbiol

Institute of Medical Microbiology and Center for Biological and Medical Research, Heinrich-Heine-University, Moorenstrasse 5, 40225 Duesseldorf, Germany.

Published: December 2004

Background: Mycoplasmas are cell wall-less bacteria which encode a minimal set of proteins. In Mycoplasma hominis, the genes encoding the surface-localized membrane complex P60/P80 are in an operon with a gene encoding a cytoplasmic, nucleotide-binding protein with a characteristic Histidine triad motif (HinT). HinT is found in both procaryotes and eukaryotes and known to hydrolyze adenosine nucleotides in eukaryotes. Immuno-precipitation and BIACore analysis revealed an interaction between HinT and the P80 domain of the membrane complex. As the membrane anchored P80 carries an N-terminal uncleaved signal peptide we have proposed that the N-terminus extends into the cytoplasm and interacts with the cytosolic HinT.

Results: Further characterization of P80 suggested that the 4.7 kDa signal peptide is protected from cleavage only in the membrane bound form. We found several proteins were released into the supernatant of a logarithmic phase mycoplasma culture, including P80, which was reduced in size by 10 kDa. Western blot analysis of recombinant P80 mutants expressed in E. coli and differing in the N-terminal region revealed that mutation of the +1 position of the mature protein (Asn to Pro) which is important for signal peptidase I recognition resulted in reduced P80 secretion. All other P80 variants were released into the supernatant, in general as a 74 kDa protein encompassing the helical part of P80. Incubation of M. hominis cells in phosphate buffered saline supplemented with divalent cations revealed that the release of mycoplasma proteins into the supernatant was inhibited by high concentrations of calciumions.

Conclusions: Our model for secretion of the P80 protein of M. hominis implies a two-step process. In general the P80 protein is transported across the membrane and remains complexed to P60, surface-exposed and membrane anchored via the uncleaved signal sequence. Loss of the 4.7 kDa signal peptide seems to be a pre-requisite for P80 secretion, which is followed by a proteolytic process leading to a helical 74 kDa product. We propose that this novel form of two-step secretion is one of the solutions to a life with a reduced gene set.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC539234PMC
http://dx.doi.org/10.1186/1471-2180-4-46DOI Listing

Publication Analysis

Top Keywords

p80
12
signal peptide
12
mycoplasma hominis
8
membrane complex
8
membrane anchored
8
uncleaved signal
8
kda signal
8
released supernatant
8
p80 secretion
8
secretion p80
8

Similar Publications

Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences.

View Article and Find Full Text PDF

Background: Persimmon (Diospyros kaki L.) belongs to the Ebenaceae family, which includes six genera and about 400 species. This study evaluated the genetic diversity of 100 persimmon accessions from Hatay province, Türkiye using 42 morphological and pomological traits, along with inter simple sequence repeat (ISSR) markers and multivariate analysis.

View Article and Find Full Text PDF

Polysorbate 80 and carboxymethylcellulose: A different impact on epithelial integrity when interacting with the microbiome.

Food Chem Toxicol

January 2025

Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain. Electronic address:

The consumption of dietary emulsifiers, including polysorbate 80 (P80) and sodium carboxymethylcellulose (CMC), has raised safety concerns due to its interaction with the intestinal microbiome. This study demonstrated that increasing concentrations of P80 and CMC added to a dynamic four-stage gut microbiota model (BFBL gut simulator) altered the microbiome composition and impacted epithelial integrity in a dose-dependent manner. 16S rDNA amplicon-based metagenomics analysis revealed that these emulsifiers increased microbial groups with proinflammatory capacities while decreasing microbial taxa known to enhance barrier function.

View Article and Find Full Text PDF

Cajal body formation is regulated by coilin SUMOylation.

J Cell Sci

December 2024

Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.

Cajal bodies (CBs) are membraneless organelles whose mechanism of formation is still not fully understood. Many proteins contribute to the formation of CBs, including Nopp140 (NOLC1), WRAP53 and coilin. Coilin is modified on multiple different lysine residues by SUMO, the small ubiquitin-like modifier.

View Article and Find Full Text PDF

The cell nucleus contains distinct biomolecular condensates that form at specific genetic loci, organize chromosomes in 3D space, and regulate RNA processing. Among these, Cajal bodies (CBs) require key "scaffolding" proteins for their assembly, which is not fully understood. Here, we employ proximity biotinylation, mass spectrometry, and functional screening to comprehensively identify and test the functions of CB components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!