We show that activation of GABA(A) receptors (GABA(A)Rs) promotes induction of N-methyl-D-aspartate (NMDA) receptor (NMDAR)-dependent long-term depression (LTD) of glutamatergic synapses in the newborn rat hippocampal area CA1 in a developmentally restricted manner. In the newborn rat hippocampus two mechanistically different types of LTD of glutamatergic synapses could be induced under similar experimental conditions. The form of the LTD induced depended on the stimulation protocol and on the age of the animal. Low-frequency stimulation (1 Hz) with 100 stimuli induced a robust homosynaptic, reversible LTD at postnatal days 2-8 (P2-P8) but not at P14. This LTD was blocked by the NMDAR antagonist AP5 or by the GABA(A)R antagonist picrotoxin. Use of a low-chloride solution in the patch pipette resulting in E(GABA-A) < -70 mV blocked the NMDAR-dependent LTD, whereas clamping the cell to -40 mV during induction rescued it. In addition, it was possible to induce LTD at P14 with 100 stimuli if the cells were clamped to -40 mV during induction. Low-frequency stimulation with 900 stimuli induced a robust homosynaptic, reversible LTD both at P2-P8 and at P14. However, neither AP5 nor picrotoxin affected the LTD induced by 900 pulses at P2-P8. Instead, the 900 stimuli-induced LTD was blocked by the metabotropic glutamate receptor antagonists when co-applied with AP5. We suggest that during the first postnatal week postsynaptic depolarization provided by the activation of GABA(A)Rs shifts the threshold for the LTD induction, making the synapses more prone to activity-induced plasticity. From the second postnatal week onwards, when the GABA(A) responses are already hyperpolarizing, different mechanisms for LTD induction prevail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2004.03806.x | DOI Listing |
Cell Rep
January 2025
Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:
Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Instituto de Biologia, Universidade Federal da Bahia, Salvador 40170-115, Brazil.
Background/objectives: Internalizing disorders, including depression and anxiety, are major contributors to the global burden of disease. While the genetic architecture of these disorders in adults has been extensively studied, their early-life genetic mechanisms remain underexplored, especially in non-European populations. This study investigated the genetic mechanisms underlying internalizing symptoms in a cohort of Latin American children.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Old Aberdeen AB24 3UE, UK.
Background/objectives: A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control.
Methods: We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level.
Transl Psychiatry
January 2025
National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, PR China.
The striatum, a core brain structure relevant for schizophrenia, exhibits heterogeneous volumetric changes in this illness. Due to this heterogeneity, its role in the risk of developing schizophrenia following exposure to environmental stress remains poorly understood. Using the putamen (a subnucleus of the striatum) as an indicator for convergent genetic risk of schizophrenia, 63 unaffected first-degree relatives of patients (22.
View Article and Find Full Text PDFInt J Neurosci
January 2025
Department of Mathematics, Payame Noor University, Tehran, Iran.
The developing brain undergoes a remarkable process of synapse production and maturation, particularly in glutamatergic synapses. In this study, we focused on the locus coeruleus (LC) nucleus, a brain region crucial for cognitive functions, to investigate the developmental changes in glutamatergic synaptic connections. Using the whole-cell patch clamp method, we recorded evoked excitatory postsynaptic currents (eEPSCs) from LC neurons in rats at ages 7, 14, and 21 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!