Physicochemical descriptors in property-based drug design.

Mini Rev Med Chem

Department of Computer-Aided Molecular Design, Institute of Physiologically Active Compounds of Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia.

Published: December 2004

The contribution of physicochemical descriptors to lipophilicity, water solubility, and intestinal absorption and oral bioavailability in humans is considered. Partitioning in the octanol/water system is presented as a competition between two opposing effects: volume and hydrogen bond acceptor ability. Water solubilities of liquid compounds are roughly equal to their reciprocal logP values. However, there is also a detectable contribution of H-bond donor ability to water solubility. The main problem in predicting the solubilities of solid chemicals and drugs is the estimation of their crystal lattice energies. QSAR approaches that add terms such as melting point, and the product of H-bond donor and acceptor parameters are not sufficient to make these predictions practical. Human intestinal absorption for passively transported drugs is almost completely correlated with hydration processes that are determined by H-bond acceptor and donor abilities. It is emphasized that structural features of drug molecules have significant influences on their properties. Classic QSAR approaches are not enough to create stable, predictive models for diverse drugs. A combination of Similarity and QSAR approaches is one possibility to take all physicochemical properties in addition to structural features into account.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557043402964DOI Listing

Publication Analysis

Top Keywords

qsar approaches
12
physicochemical descriptors
8
water solubility
8
intestinal absorption
8
ability water
8
h-bond donor
8
structural features
8
descriptors property-based
4
property-based drug
4
drug design
4

Similar Publications

Leishmaniasis is reported as the second most common protozoonosis, with the highest prevalence and mortality rate. Among the Leishmania drug targets, Pteridine Reductase 1 of (PTR1) proved to be promising because Leishmania is auxotrophic for folates. Thus, this study employed a combination of ligand- and structure-based approaches to screen new benzothiazole compounds as PTR1 inhibitor candidates.

View Article and Find Full Text PDF

Topological indices are crucial tools for predicting the physicochemical and biological features of different drugs. They are numerical values obtained from the structure of chemical molecules. These indices, particularly the degree-based TIs are a useful tools for evaluating the connection between a compound's structure and its attributes.

View Article and Find Full Text PDF

Computational Approaches for Multitarget Drug Design in Alzheimer's Disease: A Comprehensive Review.

Curr Med Chem

January 2025

Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Sidi Othman, Box 7955, Casablanca, Morocco.

Alzheimer's disease (AD) is a chronic and progressive neurodegenerative brain disorder, primarily affecting the elderly. Its socio-economic impact and mortality rate are alarming, necessitating innovative approaches to drug discovery. Unlike single-target diseases, Alzheimer's multifactorial nature makes single-target approaches less effective.

View Article and Find Full Text PDF

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!