Alkynyldiphenylphosphine d8 (Pt, Rh, Ir) complexes: contrasting behavior toward cis-[Pt(C6F5)2(THF)2].

Inorg Chem

Departamento de Química-Grupo de Síntesis Química de La Rioja, UA-CSIC, Universidad de La Rioja, 26006, Logroño, Spain.

Published: December 2004

The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic048987jDOI Listing

Publication Analysis

Top Keywords

triple-bond
9
mononuclear complexes
8
x-ray crystallography
8
complexes
7
cis-[ptc6f52thf2]
5
x-ray
5
alkynyldiphenylphosphine complexes
4
complexes contrasting
4
contrasting behavior
4
behavior cis-[ptc6f52thf2]
4

Similar Publications

The study of structure-activity relationships is a top priority in the development of nontraditional luminescent materials. In this work, nonconjugated polyurethanes (PUs) with full-color emission (red, green, and blue) are easily obtained by control of the diol monomer structure and the polymerization conditions. Selected diol monomers introduced single, double, or triple bond repeating units into the main chain of the PUs, in order to understand how unsaturated bonds and H-bonds affect their luminescence from a molecular orbital viewpoint.

View Article and Find Full Text PDF

Asymmetric gem-Hydroboration and gem-Hydrogenation of Ynamides: A New Gateway to Chiral Fischer Carbene Complexes and their Catalytic Transformations.

Angew Chem Int Ed Engl

January 2025

Max-Planck-Institut fur Kohlenforschung, Organometallic Chemistry, Kaiser-Wilhelm-Platz 1, 45470, Mülheim/Ruhr, GERMANY.

Ynamides, when reacted with H2 or HBpin in the presence of [Cp*RuCl]4, convert into chiral-at-metal Fischer carbenes by regioselective gem-hydrogenation or gem-hydroboration of the polarized triple bond, respectively. gem-Hydroboration concomitantly affords a carbogenic borylated stereocenter adjacent to the ruthenium carbene unit, the configuration of which can be controlled using an Evans auxiliary. These are the first examples of asymmetric gem-addition reactions to alkynes known in the literature; representative pianostool ruthenium carbene complexes formed by this unconventional route were characterized by crystallographic and spectroscopic means.

View Article and Find Full Text PDF

Crystalline Silylene-Stabilized Diboryne and Siladiborirene.

J Am Chem Soc

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

The exploration of main group compounds with multiple bonds has significantly enhanced our understanding of chemical bonding and expanded transition-metal-free bond activation and catalysis. Diborynes, characterized by a boron-boron triple bond (B≡B), represent a particularly challenging area due to boron's limited valence electrons. Here, we report the synthesis and characterization of a silylene-stabilized diboryne (), expanding the frontier of diboryne stabilization.

View Article and Find Full Text PDF

Achieving Photocatalytic Overall Nitrogen Fixation via an Enzymatic Pathway on a Distorted CoP Configuration.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China.

Photocatalytic nitrogen (N) fixation over semiconductors has always suffered from poor conversion efficiency owing to weak N adsorption and the difficulty of N≡N triple bond dissociation. Herein, a Co single-atom catalyst (SAC) model with a C-defect-evoked CoP distorted configuration was fabricated using a selective phosphidation strategy, wherein P-doping and C defects co-regulate the local electronic structure of Co sites. Comprehensive experiments and theoretical calculations revealed that the distorted CoP configuration caused a strong charge redistribution between the Co atoms and adjacent C atoms, minimizing their electronegativity difference.

View Article and Find Full Text PDF

In situ measurement of nitric oxide (NO) in living tissue and single cells is highly important for achieving a profound comprehension of cellular functionalities and facilitating the precise diagnosis of critical diseases; however, the progress is greatly hindered by the weak affinity of ultratrace concentration NO in cellular environment toward electrocatalysts. Herein, a new strategy is reported for precisely constructing orbital coupled dual-atomic sites to enhance the affinity between the metal atomic sites and NO on a class of N-doped hollow carbon matrix dual-atomic sites Co─Ni (CoNi-NC) for greatly boosting electrocatalytic NO performance. The as-synthesized CoNi-NC demonstrates a substantially higher current density than Ni-NC and Co-NC, coupled with exceptional stability with a negligible degradation rate of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!