Analysis of fibroblast growth factor 2 null (FGF2-/-) and wild-type (FGF2+/+) mice was used to interpret the potential in vivo role of endogenous FGF2 on oligodendrocyte lineage cell (OLC) responses during oligodendrogenesis and myelination. In wild-type mouse spinal cord, FGF2 levels increased approximately threefold between the first and second postnatal weeks, a period corresponding with the peak of oligodendrogenesis. Absence of this developmental FGF2 elevation in FGF2-/- mice eliminated the transient overproduction of oligodendrocytes that is known to occur at the peak of oligodendrogenesis in wild-type mice. Absence of FGF2 did not affect oligodendrocyte progenitor (OP) density or proliferation, based on BrdU incorporation, and also did not alter survival, based on TUNEL analysis. To examine OLC differentiation in vivo, retrovirus encoding-enhanced green fluorescent protein (GFP) was injected into the spinal cord to heritably label endogenous cycling cells in the white matter at postnatal day 7 and then identify the generated cells at postnatal day 28. Phenotypes of cells expressing GFP were identified by morphology and immunolabeling, using CC1 for oligodendrocytes and NG2 combined with platelet-derived growth factor alpha receptor for OPs. Within the population of GFP-labeled cells, the proportion of oligodendrocytes was higher in FGF2-/- mice, indicating that endogenous FGF2 inhibited OLC differentiation in wild-type mice. Furthermore, in FGF2-/- mice fewer cells appeared to be generated from an initial retrovirus-labeled cell, consistent with more frequent differentiation into post-mitotic oligodendrocytes. This in vivo analysis demonstrates that the predominant role of endogenous FGF2 on OLCs in development is inhibition of differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.20142DOI Listing

Publication Analysis

Top Keywords

endogenous fgf2
12
fgf2-/- mice
12
vivo analysis
8
oligodendrocyte lineage
8
growth factor
8
role endogenous
8
spinal cord
8
peak oligodendrogenesis
8
wild-type mice
8
olc differentiation
8

Similar Publications

The Sprouty (SPRY) proteins are evolutionary conserved modulators of receptor tyrosine kinase (RTK) signaling. SPRY2 inhibits fibroblast growth factor (FGF) signaling, whereas it enhances epidermal growth factor (EGF) signaling through inhibition of EGF receptor (EGFR) endocytosis, ubiquitination, and degradation. In this study, we analyzed the effects of SPRY2 on endocytosis and degradation of FGF receptor 1 (FGFR1) using two human glioblastoma (GBM) cell lines with different endogenous SPRY2 levels.

View Article and Find Full Text PDF

Human cell lines play an important role in biotechnology and pharmacology. For them to grow, they need complex nutrient media containing signaling proteins - growth factors. We have tested a new approach that reduces the need of cultured human cell lines for exogenous growth factors.

View Article and Find Full Text PDF

Septic lung injury is strongly associated with polarization of M1 macrophages and excessive cytokine release. Fibroblast growth factor (FGF) signaling plays a role in both processes. However, the impact of FGF2 deficiency on macrophage polarization and septic acute lung injury remains unclear.

View Article and Find Full Text PDF

CXCL10 promotes melanoma angiogenesis and tumor growth.

Anim Cells Syst (Seoul)

September 2024

Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea.

Upregulation of CXC motif chemokine 10 (CXCL10) in melanoma patients has been found to be associated with melanoma progression. However, the role of endogenous CXCL10 from the host in melanoma tumor growth remains unclear. In the present study, we found that host-derived endogenous CXCL10 production was dramatically augmented during subcutaneous B16F10 melanoma tumor growth and that host ablation of CXCL10 in mice showed a decrease in both angiogenesis and tumor growth of B16F10 melanoma .

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored the effects of transplanting human cranial bone-derived mesenchymal stem cells (hcMSCs) that were cultured in simulated microgravity (sMG) on rat models of cerebral infarction.
  • The study found that hcMSCs from the sMG group improved neurological function significantly better than those from normal gravity (1G) culture, with enhanced expression of neurotrophic factors.
  • RNA sequencing indicated that genes associated with cell growth, brain repair, and reduced differentiation were more active in stem cells from the sMG environment compared to the 1G group, suggesting potential benefits for recovery after stroke.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!