ASH sensory neurons are required in Caenorhabditis elegans for a wide range of avoidance behaviors in response to chemical repellents, high osmotic solutions and nose touch. The ASH neurons are therefore hypothesized to be polymodal nociceptive neurons. To understand the nature of polymodal sensory response and adaptation at the cellular level, we expressed the calcium indicator protein cameleon in ASH and analyzed intracellular Ca(2+) responses following stimulation with chemical repellents, osmotic shock and nose touch. We found that a variety of noxious stimuli evoked strong responses in ASH including quinine, denatonium, detergents, heavy metals, both hyper- and hypo-osmotic shock and nose touch. We observed that repeated chemical stimulation led to a reversible reduction in the magnitude of the sensory response, indicating that adaptation occurs within the ASH sensory neuron. A key component of ASH adaptation is GPC-1, a G-protein gamma-subunit expressed specifically in chemosensory neurons. We hypothesize that G-protein gamma-subunit heterogeneity provides a mechanism for repellent-specific adaptation, which could facilitate discrimination of a variety of repellents by these polymodal sensory neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC544906PMC
http://dx.doi.org/10.1038/sj.emboj.7600493DOI Listing

Publication Analysis

Top Keywords

chemical repellents
12
nose touch
12
ash neurons
8
response adaptation
8
ash sensory
8
sensory neurons
8
polymodal sensory
8
sensory response
8
shock nose
8
g-protein gamma-subunit
8

Similar Publications

Superhydrophobic paper-based functional materials have emerged as a sustainable solution with a wide range of applications due to their unique water-repelling properties. Inspired by natural examples like the lotus leaf, these materials combine low surface energy with micro/nanostructures to create air pockets that maintain a high contact angle. This review provides an in-depth analysis of recent advancements in the development of superhydrophobic paper-based materials, focusing on methodologies for modification, underlying mechanisms, and performance in various applications.

View Article and Find Full Text PDF

Induced Defense in Ryegrass-Epichloë Symbiosis Against : Impact on Peramine Levels and Pest Performance.

J Fungi (Basel)

January 2025

Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile.

The Argentine stem weevil (ASW), a major pest in ryegrass pastures, causes significant agricultural losses. Ryegrass can establish a symbiotic association with endophytic fungi, which supply chemical defenses, including peramine. This symbiosis helps protect ryegrass by providing peramine, which acts as a primary defense.

View Article and Find Full Text PDF

Omniphobic surfaces, which repel virtually any liquid regardless of its wettability, have been developed using doubly re-entrant microstructures. Although various microfabrication techniques have been explored, these often require multiple complex steps. In this study, reaction-diffusion photolithography (RDP) is used to fabricate micropost arrays with doubly re-entrant geometries through a single-step ultraviolet (UV) exposure process.

View Article and Find Full Text PDF

Photoinitiated Thiol-Ene Click Reaction for Preparation of Highly Adhesive and Mechanically Stable Silicone Coatings for Marine Antifouling and Anticorrosion.

ACS Appl Mater Interfaces

January 2025

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.

Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.

View Article and Find Full Text PDF

European honey bee (Apis mellifera) colonies are an ideal host to the invasive beetle Aethina tumida, providing a nutrient rich environment that is protected from the elements and facilitates beetle reproduction. Although various management techniques and chemical treatments for A. tumida have been developed, understanding the efficacy of these treatments and techniques is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!