The mammalian target of rapamycin (mTOR) pathway has recently emerged as a chronic modulator of insulin-mediated glucose metabolism. In this study, we evaluated the involvement of this pathway in the acute regulation of insulin action in both 3T3-L1 and human adipocytes. Insulin rapidly (t(1/2) = 5 min) stimulated the mTOR pathway, as reflected by a 10-fold stimulation of 70-kDa ribosomal S6 kinase 1 (S6K1) activity in 3T3-L1 adipocytes. Inhibition of mTOR/S6K1 by rapamycin increased insulin-stimulated glucose transport by as much as 45% in 3T3-L1 adipocytes. Activation of mTOR/S6K1 by insulin was associated with a rapamycin-sensitive increase in Ser636/639 phosphorylation of insulin receptor substrate (IRS)-1 but, surprisingly, did not result in impaired IRS-1-associated phosphatidylinositol (PI) 3-kinase activity. However, insulin-induced activation of Akt was increased by rapamycin. Insulin also activated S6K1 and increased phosphorylation of IRS-1 on Ser636/639 in human adipocytes. As in murine cells, rapamycin treatment of human adipocytes inhibited S6K1, blunted Ser636/639 phosphorylation of IRS-1, leading to increased Akt activation and glucose uptake by insulin. Further studies in 3T3-L1 adipocytes revealed that rapamycin prevented the relocalization of IRS-1 from the low-density membranes to the cytosol in response to insulin. Furthermore, inhibition of mTOR markedly potentiated the ability of insulin to increase PI 3,4,5-triphosphate levels concomitantly with an increased phosphorylation of Akt at the plasma membrane, low-density membranes, and cytosol. However, neither GLUT4 nor GLUT1 translocation induced by insulin were increased by rapamycin treatment. Taken together, these results indicate that the mTOR pathway is an important modulator of the signals involved in the acute regulation of insulin-stimulated glucose transport in 3T3-L1 and human adipocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2004-0777DOI Listing

Publication Analysis

Top Keywords

human adipocytes
20
glucose transport
12
3t3-l1 human
12
mtor pathway
12
3t3-l1 adipocytes
12
insulin
10
mammalian target
8
target rapamycin
8
transport 3t3-l1
8
adipocytes
8

Similar Publications

Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Lipotoxicity.

Antioxid Redox Signal

January 2025

Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.

Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons.

View Article and Find Full Text PDF

Poor muscle quality: A hidden and detrimental health condition in obesity.

Rev Endocr Metab Disord

January 2025

Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.

Poor muscle quality (MQ) is a hidden health condition in obesity, commonly disregarded and underdiagnosed, associated with poor health-related outcomes. This narrative review provides an in-depth exploration of MQ in obesity, including definitions, available assessment methods and challenges, pathophysiology, association with health outcomes, and potential interventions. MQ is a broad term that can include imaging, histological, functional, or metabolic assessments, evaluating beyond muscle quantity.

View Article and Find Full Text PDF

Patterns of Public Interest in Lipomas and Lipoma-Removal Procedures: Google Trends Analysis.

JMIR Dermatol

January 2025

NYU Langone Health, 550 1st Ave, New York, NY, 10016, United States, 1 (212) 263-5290.

Background: Lipomas are benign tumors composed of encapsulated adipocytes. Although relatively common, uncertainty remains about the population-level prevalence, the etiology, and the degree of public interest in lipomas and associated removal procedures.

Objective: The spatiotemporal patterns of public interest in lipomas and lipoma removal procedures were characterized.

View Article and Find Full Text PDF

Mechanisms of Lipid-Associated Macrophage Accrual in Metabolically Stressed Adipose Tissue.

Bioessays

January 2025

Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.

Adipose tissue (AT) inflammation, a hallmark of the metabolic syndrome, is triggered by overburdened adipocytes sending out immune cell recruitment signals during obesity development. An AT immune landscape persistent throughout weight loss and regain constitutes an immune-obesogenic memory that hinders long-term weight loss management. Lipid-associated macrophages (LAMs) are emerging as major players in diseased, inflamed metabolic tissues and may be key contributors to an obesogenic memory in AT.

View Article and Find Full Text PDF

Aims: Thermogenic adipocytes are able to dissipate energy as heat from lipids and carbohydrates through enhanced uncoupled respiration, due to UCP1 activity. PPAR family of transcription factors plays an important role in adipocyte biology. The purpose of this work was to characterize the role of PPARα and pemafibrate in the control of thermogenic adipocyte formation and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!