Background: Hormonal modulation of the endometrium towards receptivity is well established; however, the role of embryonic stimuli in modulation of the endometrium prior to implantation, especially in primates, is unknown. The aim of the present study was to evaluate the endometrial histology when the embryo was present in its vicinity prior to implantation.
Methods: Preimplantation factor (PIF) bioassay was used as a tool to detect the presence of an embryo in the uterine lumen of mated bonnet monkeys (Macaca radiata) (n=9). The control group comprised seven non-mated animals. The specificity of the PIF bioassay for the presence of an embryo was tested by studies in pregnant humans and monkeys. The effects of embryonic stimuli on the endometrial morphology were analysed by routine haematoxylin-eosin staining. The expressions of CD34, an endothelial cell marker, alpha-smooth muscle actin (alpha-SMA), a marker for blood vessel maturation, and prolactin, a marker of endometrial decidualization, were studied by immunohistochemistry.
Results: That PIF is embryo specific was established by its presence in sera of pregnant humans, monkeys and also in embryo culture media. Six mated bonnet monkeys were found to be PIF positive. Morphologically, the endometria from these PIF-positive animals showed the presence of the pre-epithelial plaque reaction, increased angiogenesis and stromal compaction. The significantly increased number of CD34- and alpha-SMA-positive blood vessels (P<0.05) in the endometria of PIF-positive animals indicated increased angiogenesis in response to embryonic stimuli. The endometrial expression of immunoreactive prolactin was also significantly increased (P<0.05) in the PIF-positive animals, indicating decidualization.
Conclusions: Using PIF as a marker to detect early pregnancy in bonnet monkeys, we have shown that the embryo induces a pre-epithelial plaque type of reaction, increased angiogenesis and decidual reaction in the endometrium prior to implantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/humrep/deh534 | DOI Listing |
Microsc Microanal
January 2025
Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:
3-methyl-4-nitrophenol (PNMC), a chemical prevalent in various industries for drug, dye, and leather production, also serves as a primary byproduct of organophosphate insecticides. Despite its global recognition as an endocrine disruptor with documented reproductive toxicity, its detrimental impact on preimplantation embryonic development has yet to be thoroughly investigated. In this study, through the in vitro culture of mice embryos, it was initially observed that even low concentrations of PNMC exposure led to a significant reduction in blastocyst formation and a sharp decline in the ratio of inner cell mass within the blastocysts.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.
Early embryonic development relies on intricately regulated gene expression, and miRNAs influence zygotic genome activation (ZGA), cleavage, and cell fate determination through post-transcriptional regulatory mechanisms. miR-192 is expressed in early pig embryos and participates in various reproductive processes. However, its role in pre-implantation pig embryo development remains poorly understood.
View Article and Find Full Text PDFHum Reprod
January 2025
IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III-Paul Sabatier (UPS), Toulouse, France.
Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?
Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.
What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.
F S Rep
December 2024
Clinical Department, Al Ain Fertility Center, Al Ain, Abu Dhabi, United Arab Emirates.
Objective: To present a case of a couple with 20 years of infertility and 10 recurrent in vitro fertilization (IVF) failures, identifying a paternal complex chromosome rearrangement using high-resolution karyotype together with preimplantation genetic testing for structural rearrangements (PGT-SR) and utilizing IVF-intracytoplasmic sperm injection to achieve a successful pregnancy.
Design: Case report.
Setting: Al Ain Fertility Center, Abu Dhabi, United Arab Emirates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!