Novel domino reactions for diterpene synthesis.

J Org Chem

Department of Chemistry, University of Mumbai, Mumbai-400098, India.

Published: December 2004

New types of concerted domino acylation-cycloalkylation/alkylation-cycloacylation reactions have been described. These processes promoted by methanesulfonic acid-phosphorus pentoxide and concentrated H(2)SO(4), respectively, provide efficient, elegant, and expeditious routes for biologically active naturally occurring diterpenoids, namely (+/-)-ferruginol (1), (+/-)-nimbidiol (2), (+/-)-nimbiol (3), (+/-)-totarol (4), and ar-abietatriene (5).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo049616nDOI Listing

Publication Analysis

Top Keywords

novel domino
4
domino reactions
4
reactions diterpene
4
diterpene synthesis
4
synthesis types
4
types concerted
4
concerted domino
4
domino acylation-cycloalkylation/alkylation-cycloacylation
4
acylation-cycloalkylation/alkylation-cycloacylation reactions
4
reactions described
4

Similar Publications

A copper-catalyzed domino addition/cyclization reaction was developed to synthesize novel benzoselenazole-linked 1,2,3-triazole and tetracyclic fused 12-benzo[4,5]selenazole[2,3-]quinazolin-12-one derivatives from isoselenocyanates. This domino reaction efficiently constructed multiple new chemical bonds in a single step, forming either four (one C-Se and three C-) or three (one C-Se and two C-) bonds. The reaction offers several key advantages, including mild conditions, broad substrate compatibility, and straightforward and safe operation.

View Article and Find Full Text PDF

Complex networks, from neuronal assemblies to social systems, can exhibit abrupt, system-wide transitions without external forcing. These endogenously generated "noise-induced transitions" emerge from the intricate interplay between network structure and local dynamics, yet their underlying mechanisms remain elusive. Our study unveils two critical roles that nodes play in catalyzing these transitions within dynamical networks governed by the Boltzmann-Gibbs distribution.

View Article and Find Full Text PDF

A novel and highly efficient Pd-catalyzed approach for the synthesis of bis-heterocycles featuring both isoxazoline and methyleneindole motifs is demonstrated. The in situ formation of vinyl Pd(II) species through an alkyne-tethered carbamoyl chloride cyclization is crucial, and the innovative Pd-catalyzed carboetherification of β,γ-unsaturated oximes with vinyl Pd(II) species has been developed. This method is not only operationally straightforward but also exhibits a broad substrate scope and excellent functional group tolerance.

View Article and Find Full Text PDF

Zinc-Organic Gel with Self-Catalysis-Enhanced Electrochemiluminescence as an Emitter for the Evaluation of Liver Cancer Markers.

Anal Chem

December 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.

Herein, a novel zinc-organic gel with self-catalysis-enhanced electrochemiluminescence (ECL) performance was prepared as an emitter for the first time to assemble a biosensor for ultrasensitive detection of microRNA-221 (miR-221) related to liver cancer. Interestingly, Zn served as a central ion to coordinate with multidentate ligands 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (TATB) at room temperature to form Zn-TATB-MOGs with excellent ECL intensity. More importantly, compared to metal ions (e.

View Article and Find Full Text PDF

Initially, 4,4'-(1,4-phenylene)di(sulfonic)pyridinium tetrachloroferrate (PDSPTCF) as a novel organic-inorganic hybrid salt was synthesized and identified by elemental mapping, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectrometer, Raman spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, vibrating-sample magnetometry, and thermal gravimetric (TG) techniques. Then, the catalytic performance of this hybrid salt was assessed for the producing benzo[a]benzo[6,7]chromeno[2,3-c]phenazine derivatives via one-pot multicomponent domino reaction (MDR) of benzene-1,2-diamine, 2-hydroxynaphthalene-1,4-dione and aldehydes under optimal conditions (70 °C, solvent-free, 5 mol% PDSPTCF) in short reaction times and high yields. Highly efficacy of the PDSPTCF for the production of benzo[a]pyrano[2,3-c]phenazines can be assigned to the synergistic effect of Lewis and Brønsted acids, and having two positions of each acid (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!