The many signs of cognitive processes in the activation pattern of the primary motor cortex or in corticospinal (CS) excitability gave rise to the idea that the motor cortex is a crucial node in the processing of cognitive information related to sensorimotor functions. Moreover, it became clear that the preparatory motor sets offer a privileged window to investigate the interaction between cognitive and sensorimotor function in the motor cortex. In the present review, we examine how the study of the preparatory motor sets anticipating a mechanical movement perturbation contributes to enlightening this question. Following the initial observation made by Hammond that some components of the stretch reflex can be modulated by a prior intention either to resist or to relax in response to a subsequent perturbation, first evidence of the phenomenon was obtained in behaving monkeys. Moreover, this study related this peripheral fact to the observed anticipatory activity of motor cortex neurons after a prior instruction telling the animal how to respond to the subsequent perturbation, which triggered the instructed movement. Indeed, this anticipatory activity was found to be different according to the instruction. In the 1980s, this work inspired a lot of studies in human beings that brought support to the idea of a cognitive tuning of the long latency stretch response (LLSR). Specifically, the MI component of the response was shown to be modulated by a prior intent to resist versus to let go when faced with the perturbation. Recently, new approaches have been developed to obtain evidence of a cognitive tuning of CS excitability, thanks to transcranial magnetic stimulation (TMS). TMS has been used both as a reliable tool for quantifying the CS excitability via the motor evoked potentials (MEPs), and to centrally perturb the organization of movement. Such central perturbations offer the unique opportunity to activate the descending motor tracts while shunting, for a short time period, the ascending tracts assisting the movement. Thus, CS excitability was measured before the movement was perturbed. These studies demonstrated the readiness of the CS tract to be involved in anticipatory compensatory responses to central movement perturbations induced by TMS in relation to the subject's cognitive attitudes. The question of the cerebral regions upstream of the motor cortex that could be responsible for this modulation in CS excitability remains largely open.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/revneuro.2004.15.5.371 | DOI Listing |
Front Aging Neurosci
January 2025
Department of Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Background: The perception of Subjective Visual Vertical (SVV) is crucial for postural orientation and significantly reflects an individual's postural control ability, relying on vestibular, visual, and somatic sensory inputs to assess the Earth's gravity line. The neural mechanisms and aging effects on SVV perception, however, remain unclear.
Objective: This study seeks to examine aging-related changes in SVV perception and uncover its neurological underpinnings through functional near-infrared spectroscopy (fNIRS).
Front Hum Neurosci
January 2025
The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China.
Tourette syndrome (TS) is a neuropsychiatric disorder characterized by chronic motor and phonic tics, with a higher prevalence among boys. This condition can significantly impact patients' learning and daily life. Due to the limited efficacy and potential side effects of pharmacological treatments for TS, there is a critical need to develop novel, tailored therapeutic strategies.
View Article and Find Full Text PDFNeurosurg Focus Video
January 2025
Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and.
Eloquent brain creates a challenge when resecting brain arteriovenous malformations (bAVMs). Here the authors present their technique of using subcortical motor mapping as an adjunct to increase safety during resection of a high-grade bAVM involving somatosensory cortex as well as cortical spinal tracts and visual tracts. After a bilateral craniotomy, they use direct cortical stimulation of the left motor cortex and subcortical stimulation using a suction stimulator to dynamically map motor tracts during the resection.
View Article and Find Full Text PDFCureus
December 2024
Department of Physiology, Touro College of Osteopathic Medicine, Middletown, USA.
Down syndrome (DS) is a genetic intellectual disorder caused by trisomy of chromosome 21 (Hsa21) and presents with a variety of phenotypes. The correlation between the chromosomal abnormality and the resulting symptoms is unclear, partly due to the spectrum of impairments observed. However, it has been determined that trisomy 21 contributes to neurodegeneration and impaired neurodevelopment resulting from decreased neurotransmission, neurogenesis, and synaptic plasticity.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
May 2024
Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
Utilizing a multi-task deep learning framework, this study generated synthetic CT (sCT) images from a limited dataset of Ultrashort echo time (UTE) MRI for transcranial focused ultrasound (tFUS) planning. A 3D Transformer U-Net was employed to produce sCT images that closely replicated actual CT scans, demonstrated by an average Dice coefficient of 0.868 for morphological accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!