A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uptake of bromide by two wetland plants (Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud). | LitMetric

Uptake of bromide by two wetland plants (Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud).

Environ Sci Technol

Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, USA.

Published: November 2004

The successful use of bromide (Br-) as a conservative tracer for hydrological tests in wetland systems requires minimal Br- loss due to plant uptake. The uptake of Br- by two wetland plants, cattail (Typha latifolia L.) and reed grass (Phragmites australis (Cav.) Trin. ex Steud), was investigated in greenhouse flow-through microcosms. Concentrations of Br- and other pertinent constituents in sediment pore water were measured at 2 cm depth increments in the sediment column. The vertical Br- concentration profiles in the sediments clearly revealed Br- uptake by T. latifolia and by P. australis. X-ray spectroscopy studies of bromine in plant samples revealed the accumulation of Br- in root and leaf tissues. Plant transpiration was found to significantly concentrate dissolved species in sediments and was accounted for in the calculations of Br uptake rates. Michaelis-Menten kinetics satisfactorily describe Br- uptake by T. latifolia. The uptake of Br- by P. australis, however, showed unique features that could not be described using Michaelis-Menten kinetics. The addition of chloride (Cl-) effectively inhibited Br- uptake, and the uptake of Cl- and Br- by T. latifolia was shown to follow dual-substrate Michaelis-Menten kinetics. Results of this study indicate that the use of Br- for tracer experiments in vegetated wetland systems should be evaluated with great caution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es049568oDOI Listing

Publication Analysis

Top Keywords

br-
12
br- uptake
12
michaelis-menten kinetics
12
uptake
9
wetland plants
8
typha latifolia
8
phragmites australis
8
australis cav
8
cav trin
8
trin steud
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!