Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel ionotropic glutamate receptor subunit delta2 (GluRdelta2), which is specifically expressed in cerebellar Purkinje neurons (PNs), is implicated in the induction of long-term depression. Mutant mice deficient in GluRdelta2 (delta2-/-) have abnormal cerebellar synaptic organization and impaired motor coordination and learning. Previous in vivo extracellular recordings indelta2-/- revealed that PN activity distinct from that in wild-type (WT) mice is attributable to enhanced climbing fiber activity. Here, we report that GABAergic synaptic transmission was enhanced in the molecular layer of the cerebellar cortex in delta2-/-. Optical recordings in cerebellar slice preparations indicated that application of bicuculline, a GABA(A) receptor antagonist, increased the amplitude and area of excitation propagation more in delta2-/- than in WT. Whole-cell patch-clamp recordings from PNs demonstrated that miniature IPSC (mIPSC) amplitude were larger in delta2-/- than in WT. Also, rebound potentiation (RP), a type of long-lasting inhibitory synaptic potentiation inducible by postsynaptic depolarization of PNs in WT, was not induced in slices prepared from delta2-/-. In contrast, RP was induced in cultured PNs prepared from delta2-/-. Pharmacologic activation of climbing fibers in WT in vivo increased mIPSC amplitudes in PNs and prevented RP induction. These results suggest that enhanced climbing fiber activity in delta2-/- potentiates IPSC amplitudes in PNs through RP in vivo, resulting in the prevention of additional RP induction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730220 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2240-04.2004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!