TGF-beta signal transduction in oro-facial health and non-malignant disease (part I).

Crit Rev Oral Biol Med

Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.

Published: November 2004

The transforming growth factor-beta (TGF-beta) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-beta plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-beta signal transduction pathways. This review summarizes the evidence implicating TGF-beta in normal physiological processes of the craniofacial complex-such as palatogenesis, tooth formation, wound healing, and scarring-and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus.

Download full-text PDF

Source
http://dx.doi.org/10.1177/154411130401500602DOI Listing

Publication Analysis

Top Keywords

tgf-beta signal
8
signal transduction
8
non-malignant disease
8
tgf-beta
5
transduction oro-facial
4
oro-facial health
4
health non-malignant
4
disease
4
disease transforming
4
transforming growth
4

Similar Publications

The intertwined nature of cardiac and renal failure, where dysfunction in one organ predicts a poor outcome in the other, has long driven the interest in uncovering the exact molecular links between the two. Elucidating the mechanisms driving Cardiorenal Syndrome (CRS) will enable the development of targeted therapies that disrupt this detrimental cycle, potentially improving outcomes for patients. A recent study by Chatterjee .

View Article and Find Full Text PDF

TRIF-TAK1 signaling suppresses caspase-8/3-mediated GSDMD/E activation and pyroptosis in influenza A virus-infected airway epithelial cells.

iScience

January 2025

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China.

Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line.

View Article and Find Full Text PDF

Pathological myocardial hypertrophy can induce heart failure with high mortality, it is necessary to explore its pathogenesis. Tripartite motif-containing 26 (TRIM26) belongs to the multidomain E3 ubiquitin ligase family. We observed increased expression of TRIM26 in the myocardium of C57BL/6 mice subjected to transverse aortic constriction (TAC) surgery and neonatal rat cardiomyocytes (NRCMs) treated with phenylephrine (PE).

View Article and Find Full Text PDF

Single-cell multi-omics deciphers hepatocyte dedifferentiation and illuminates maintenance strategies.

Cell Prolif

January 2025

MOE Key Laboratory of Bioinformatics, Beijing National Research Center for Information Science and Technology, Bioinformatics Division, Tsinghua University, Beijing, China.

Due to the similarity to human hepatocytes, porcine hepatocytes play an important role in hepatic research and drug evaluation. However, once hepatocytes were cultured in vitro, it was often prone to dedifferentiate, resulting in the loss of their characteristic features and normal functions, which impede their application in liver transplantation and hepatotoxic drugs evaluation. Up to now, this process has yet to be thoroughly investigated from the single-cell resolution and multi-omics perspective.

View Article and Find Full Text PDF

The ethanolic extract of Rhaphidophora peepla prevents inflammation by inhibiting the activation of Syk/AKT/NF-κB and TAK1/MAPK/AP-1.

Phytomedicine

January 2025

Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Background: Inflammation is the body's innate reaction to foreign pathogens and serves as a self-regulating mechanism. However, the immune system can mistakenly target the body's own tissues, triggering unnecessary inflammation. For millennia, medicinal plants have been employed for the treatment of diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!