Download full-text PDF

Source

Publication Analysis

Top Keywords

dysregulation growth
4
growth hormone
4
hormone acquired
4
acquired generalized
4
generalized lipodystrophy
4
dysregulation
1
hormone
1
acquired
1
generalized
1
lipodystrophy
1

Similar Publications

Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities.

J Transl Med

January 2025

Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.

Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.

View Article and Find Full Text PDF

Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment.

Lipids Health Dis

January 2025

Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.

Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is one of the most fatal malignancies in the world, accounting for 42% of all deaths due to metastasis. The significant development is hindered by the multi-drug resistance and poor patient compliance. PIK3CA gene mutation is one of the important causes of TNBC, which causes dysregulation of the cell cycle and cell proliferation.

View Article and Find Full Text PDF

Modulating the gut microbiota: A novel perspective in colorectal cancer treatment.

Cancer Lett

January 2025

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China. Electronic address:

Colorectal cancer (CRC), the second leading cause of cancer-related deaths worldwide, is intricately linked to the dysregulation of the gut microbiota. Manipulating the gut microbiota has emerged as a novel strategy for the prevention and treatment of CRC. Natural products, a pivotal source in new drug discovery, have shown promise in recent research as regulators of the gut microbiota, offering potential applications in the prevention and treatment of CRC.

View Article and Find Full Text PDF

Current status of cyclopropane fatty acids on bacterial cell membranes characteristics and physiological functions.

Microb Pathog

January 2025

Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.

Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!