Synergy of human Pol II core promoter elements revealed by statistical sequence analysis.

Bioinformatics

Department of Biomedical Informatics, The Ohio State University, 3184 Graves Hall, 333 W. 10th Avenue, Columbus, OH 43210, USA.

Published: April 2005

AI Article Synopsis

  • The paper analyzes human promoter DNA sequences, focusing on how various core promoter elements interact during transcription initiation.
  • It proposes new combinations of core promoter elements that show statistically significant synergies, suggesting that these combinations may be as important as previously established ones.
  • The study emphasizes the role of the BRE element, indicating its significance and exploring mechanisms for its action in promoters with multiple transcription start sites.

Article Abstract

Motivation: The subject of our paper is bioinformatics analysis of the distinguishing features of human promoter DNA sequences, in particular of synergetic combinations of core promoter elements therein. We suppose that specific scenarios of transcription initiation are essentially related to various particular implementations of the interaction of basal transcription machinery with promoter DNA, depending on the presence and mutual positioning of core promoter elements.

Results: In addition to the combinations of core promoter elements previously experimentally confirmed [TATA box and Initiator (Inr), Downstream Promoter Element (DPE) and Inr, and TFIIB recognition element (BRE) and TATA box] we propose other alternate synergetic combinations: BRE and Inr, BRE and DPE, and TATA and DPE with respective models. The suggestion is based on a high statistical significance of the alternate combinations in promoters, comparable with the significance of the known combinations. We also present arguments that the BRE element is statistically more important than previously thought, and suggest possible mechanisms of action of the core elements in the promoters with multiple transcription start sites.

Contact: ioschikhes-1@medctr.osu.edu

Supplementary Information: Supplementary information is available at http://bmi.osu.edu/~ilya/synergy/Gershenzon_SuppMat-R.pdf.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bti172DOI Listing

Publication Analysis

Top Keywords

core promoter
16
promoter elements
12
promoter dna
8
synergetic combinations
8
combinations core
8
promoter
7
core
5
combinations
5
synergy human
4
human pol
4

Similar Publications

Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.

View Article and Find Full Text PDF

SMYD3 plays a pivotal role in mediating the epithelial-mesenchymal transition process in breast cancer.

Biochem Biophys Res Commun

January 2025

Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. Electronic address:

In previous reports, we highlighted the significant involvement of SMYD3, a histone methyltransferase (HMT), in various aspects of cancer progression, including cell adhesion, migration, and invasion. In this study, we delved deeper into understanding the relationship between SMYD3 and epithelial-mesenchymal transition (EMT) both in cell lines and clinical samples. Our investigation uncovered a notable correlation between heightened SMYD3 expression and the presence of EMT markers in human breast cancer tissues.

View Article and Find Full Text PDF

A Lipoxygenase Gene Modulates Jasmonate Biosynthesis to Enhance Blast Resistance in Rice.

J Exp Bot

January 2025

State Key Laboratory for Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.

Inhibition of jasmonic acid (JA) signaling renders plants more susceptible to biotic stresses. Pathogen infection can induce an increase in JA levels. However, our understanding of the mechanisms mediating pathogen-induced JA accumulation in rice (Oryza sativa) remains limited.

View Article and Find Full Text PDF

Reportedly, the number of κ-casein (κ-CN) B alleles increases the proportion of κ-CN to total protein and the κ-CN content. This phenomenon is caused by single-nucleotide polymorphisms (SNPs) in the promoter region of , which encodes the B variant. Therefore, a series of 5'-deleted promoter plasmids were constructed to define the core promoter of .

View Article and Find Full Text PDF

26S Proteasome Subunit SlPBB2 Regulates Fruit Development and Ripening in Tomato.

J Agric Food Chem

January 2025

Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Proteasomes are protein complexes responsible for degrading unneeded or damaged proteins through proteolysis and play critical roles in regulating plant development and response to environmental stresses. However, it is still unclear whether proteasomes regulate fruit development and ripening. In this study, we investigated the function of a core proteasome subunit, SlPBB2, in tomato fruit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!