Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spatial control is a key issue in cell division. The Ran GTPase regulates several fundamental processes for cell life, largely acting through importin molecules. The best understood of these is protein import through the nuclear envelope in interphase, but roles in mitotic spindle assembly are also established. In mammalian cells, in which centrosomes are major spindle organizers, a link is emerging between the Ran network, centrosomes and spindle poles. Here, we show that, after nuclear envelope breakdown, importin beta is transported to the spindle poles in mammalian cells. This localization is temporally regulated from prometaphase until anaphase, when importin beta dissociates from poles and is recruited back around reforming nuclei. Importin beta sediments with mitotic microtubules in vitro and its accumulation at poles requires microtubule integrity and dynamics in vivo. Furthermore, RNA interference-dependent inactivation of TPX2, the major Ran-dependent spindle organizer, abolishes importin beta accumulation at poles. Importin beta has a functional role in spindle pole organization, because overexpression yields mitotic spindles with abnormal, fragmented poles. Coexpression of TPX2 with importin beta mitigates these abnormalities. Together, these results indicate that the balance between importins and spindle regulators of the TPX2 type is crucial for spindle formation. Targeting of TPX2/importin-beta complexes to poles is a key aspect in Ran-dependent control of the mitotic apparatus in mammalian cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.01569 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!