The calcium channel gamma (gamma) subunit family consists of eight members whose functions include modulation of high voltage-activated (HVA) calcium currents in skeletal muscle and neurons, and regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propanoic acid (AMPA) receptor targeting. Cardiac myocytes express at least three gamma subunits, gamma(4), gamma(6) and gamma(7), whose function(s) in the heart are unknown. Here we compare the effects of the previously uncharacterized gamma(6) subunit with that of gamma(4) and gamma(7) on a low voltage-activated calcium channel (Cav3.1) that is expressed in cardiac myocytes. Co-expression of both the long and short gamma(6) subunit isoforms, gamma(6L) and gamma(6S), with Cav3.1 in HEK-293 cells significantly decreases current density by 49% and 69%, respectively. Two other gamma subunits expressed in cardiac myocytes, gamma(4) and gamma(7), have no significant effect on Cav3.1 current. Neither gamma(6L), gamma(6S), gamma(4) nor gamma(7) significantly affect the voltage dependency of activation or inactivation or the kinetics of Cav3.1 current. Transient expression of gamma(6L) in an immortalized atrial cell line (HL-1) significantly reduces the endogenous low voltage-activated current in these cells by 63%. Green fluorescent protein tagged gamma(6L) is localized primarily in HEK-293 cell surface membranes where it is evenly distributed. Expression of gamma(6L) does not affect the level of Cav3.1 mRNA or the amount of total Cav3.1 protein in transfected HEK-293 cells. These results demonstrate that the gamma(6) subunit has a unique ability to inhibit Cav3.1 dependent calcium current that is not shared with the gamma(4) and gamma(7) isoforms and is thus a potential regulator of cardiac low voltage-activated calcium current.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2004.08.005 | DOI Listing |
Elife
December 2024
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States.
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1 neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle.
View Article and Find Full Text PDFFront Neurol
November 2024
Department of Neurobiology, University of Chicago, Chicago, IL, United States.
J Physiol
October 2024
School of Biosciences, University of Sheffield, Sheffield, UK.
Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
5β-Dihydrosteroids are produced by the reduction of Δ-3-ketosteroids catalyzed by steroid 5β-reductase (AKR1D1). By analogy with steroid 5α-reductase, genetic deficiency exists in which leads to errors in newborn metabolism and in this case to bile acid deficiency. Also, like the 5α-dihydrosteroids (e.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Department of Otolaryngology-Head & Neck Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!