In a radon prone area in Belgium, a dwelling with high indoor radon concentrations was identified through a passive measurement. Next, a continuous, active radon monitoring device was installed for one month. A 20-a retrospective radon assessment was also performed. The house was subsequently mitigated through active subslab depressurization with a radial fan. Afterwards the dwelling was actively monitored for several more months to observe the effects of the mitigation and to study the effect of reducing the fan power. Dose evaluations were made to evaluate the health benefit of the mitigation. It was seen that the results of the three measuring techniques before mitigation all yielded between 1700 and 2000 Bq/m3. Clear diurnal radon variations showed up only after mitigation. After mitigation, the average radon concentration fell to less than 200 Bq/m3. The yearly average dose was reduced from potentially 45 mSv/y to less than 4.5 mSv/y through mitigation. Reducing fan power to 50% did not clearly influence the amount of radon entering into the dwelling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2004.06.001DOI Listing

Publication Analysis

Top Keywords

active subslab
8
subslab depressurization
8
reducing fan
8
fan power
8
mitigation
7
radon
7
mitigation radon-rich
4
radon-rich belgian
4
dwelling
4
belgian dwelling
4

Similar Publications

Subslab soil gas (SSSG) samples were collected as part of an investigation to evaluate vapor intrusion (VI) into a building. The June 2015 Office of Solid Waste and Emergency Response (OSWER) VI Guide (U.S.

View Article and Find Full Text PDF

The purpose of this article is the assessment of energy efficiency and indoor air quality for a single-family house located in Cluj-Napoca County, Romania. The studied house is meant to be an energy-efficient building with thermal insulation, low U-value windows, and a high efficiency boiler. Increasing the energy efficiency of the house leads to lower indoor air quality, due to lack of natural ventilation.

View Article and Find Full Text PDF

Sub-slab depressurisation systems have proven to effectively mitigate radon entry. A poor understanding of the fluid physics underlying the technique has been shown to lower the success rate substantially. This article describes a study of pressure fields in a sub-slab gravel bed induced by a soil depressurisation system consisting of perforated pipes run under the slab at a depth of 75 cm.

View Article and Find Full Text PDF

Mathematical analysis and flux-based radius of influence for radon/VOC vapor intrusion mitigation systems.

Sci Total Environ

October 2020

Geosyntec Consultants, Inc., Guelph, Ontario, Canada. Electronic address:

Volatile organic compounds (VOCs) and radon progeny pose potential health risks to occupants of certain buildings via subsurface vapor intrusion (VI) to indoor air. VI mitigation is usually performed using systems that extract gas from below the building, and the system performance is typically evaluated by measuring the distribution of applied vacuum below the floor. This article provides a new approach to assessing the radius of influence (ROI) for subslab venting systems based on mass flux instead of static vacuum distribution and includes an analyses of 121 pneumatic tests performed at 65 different suction points in 16 different buildings.

View Article and Find Full Text PDF

Radon interventions around the globe: A systematic review.

Heliyon

May 2019

School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Crescent, Room 216A, Ottawa, ON K1G 5Z3, Canada.

Background: Radon is the primary source of environmental radiation exposure posing a significant human health risk in cold countries. In Canada, most provinces have revised building codes by 2017, requiring construction solutions to avoid radon in all new buildings. While various construction solutions and remediation techniques have been proposed and evaluated, the question about the best method that would effectively reduce radon in a variety of contexts remained unanswered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!