Aerosols reduce the surface reaching solar flux by scattering the incoming solar radiation out to space. Various model studies on climate change suggest that surface cooling induced by aerosol scattering is the largest source of uncertainty in predicting the future climate. In the present study measurements of aerosol optical depth (AOD) and its direct radiative forcing efficiency has been presented over a typical tropical urban environment namely Hyderabad during December, 2003. Measurements of AOD have been carried out using MICROTOPS-II sunphotometer, black carbon aerosol mass concentration using Aethalometer, total aerosol mass concentration using channel Quartz Crystal Microbalance (QCM) Impactor Particle analyser and direct normal solar irradiance using Multifilter Rotating Shadow Band Radiometer (MFRSR). Diurnal variation of AOD showed high values during afternoon hours. The fraction of BC estimated to be approximately 9% in the total aerosol mass concentration over the study area. Results of the study suggest -62.5 Wm(-2) reduction in the ground reaching shortwave flux for every 0.1 increase in aerosol optical depth. The results have been discussed in the paper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2004.09.013 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.
View Article and Find Full Text PDFAnal Chem
January 2025
Cigar Technology Innovation Center of China Tobacco, Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu 610066, People's Republic of China.
This study developed a portable arc iKnife ionization mass spectrometry (AII-MS) technique integrating a surgical knife with low-temperature arc plasma to interact with plant tissues. The thermal energy from the arc plasma induces the sputtering of water-containing plant tissues, leading to the formation of aerosols. These aerosols are then charged by plasma-generated ions, producing charged microdroplets that are ultimately detected by a mass spectrometer.
View Article and Find Full Text PDFNanotoxicology
January 2025
Infection, Inflammation and Repair, Faculty of Medicine, University of Southampton, Southampton, UK.
The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Chemistry, Universitas Indonesia, Depok, 16424, Indonesia.
To investigate the potential of activated carbon from palm kernel shell waste for Tc-radiolabeled nanocarbon aerosol, a new production technology for carbon-based Tc-radioaerosol from such a waste was developed. Treated-palm shell charcoal (t-PSC) was prepared by hydrothermal method to increase the surface area, followed by Tc radiolabelling optimization. The optimal Tc radiolabeling conditions resulted in an adsorption capacity of 21.
View Article and Find Full Text PDFInt J Pharm
January 2025
CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain.
Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!