Nine children suffering from progressive muscular dystrophy (7 Duchenne and 2 Becker) were included in a program of low-frequency electrical stimulation (LFES) of the right tibialis anterior (TA) muscle. Muscle strength and muscle fatigue were estimated by measuring torques in the ankle during attempts of maximal voluntary contraction (MVC) in the direction of dorsal flexion of the foot and during electrically evoked contractions (EEC). No important increase in the strength of the stimulated muscles was noticed in 4 boys whose muscles were stimulated for 3 months. The muscles of 5 boys who were subjected to electrical stimulation for 9 months showed an improvement; 6 measurements made during the stimulation program revealed that changes of torques in the ankle of the right stimulated extremity were significantly different (P less than 0.001) from the changes of torques in the ankle of the left nonstimulated extremity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.880150316DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
12
torques ankle
12
duchenne becker
8
muscular dystrophy
8
changes torques
8
long-term electrical
4
stimulation
4
muscles
4
stimulation muscles
4
muscles children
4

Similar Publications

Unlabelled: Introduction-Aim: Chronic low back pain affects 80% of individuals at some point in their lives and has significant socioeconomic impacts. This study aims to compare the efficacy of mesotherapy with transcutaneous electrical nerve stimulation (TENS) in treating chronic low back pain.

Methods: A randomized bicentric study was conducted at the Military Hospital of Tunis and the Multidisciplinary Military Polyclinic of Mefeteh Saadallah between August 2023 and June 2024.

View Article and Find Full Text PDF

Background: Lipopolysaccharide (LPS)-induced apoptosis of lung microvascular endothelial cells (ECs) is the main reason of lung edema and acute lung injury (ALI) in septic conditions. Telocytes (TCs) are a distinct type of interstitial cells found around the lung microvasculature, which may protect ECs through the release of shed vesicles. However, whether TCs protect against LPS-induced EC apoptosis and ALI has not been determined.

View Article and Find Full Text PDF

Neuromuscular electrical stimulation producing low evoked force elicits the repeated bout effect on muscle damage markers of the elbow flexors.

Sports Med Health Sci

March 2025

Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA.

This study examined the repeated bout effect (RBE) on muscle damage markers following two bouts of neuromuscular electrical stimulation (NMES) in untrained individuals. Following familiarization, participants received 45 consecutive NMES to the biceps brachii at an intensity that produced low evoked force for the elbow flexors. Muscle damage markers (maximal voluntary isometric contraction [MVIC], elbow range of motion [ROM], muscle soreness via visual analogue scale [VAS] scores, pressure pain threshold [PPT], and muscle thickness) were measured before (PRE), after (POST), 1 day after (24 POST), and 2 days after (48 POST) NMES.

View Article and Find Full Text PDF

Background: Quadriceps weakness is a common barrier to effective rehabilitation after anterior cruciate ligament (ACL) surgery. Neuromuscular electrical stimulation (NMES)-the application of electrical currents to induce muscle contraction-has been used as part of the postoperative rehabilitation regimen.

Purpose: To investigate the effects of NMES on the recovery of quadriceps strength and knee function after ACL surgery.

View Article and Find Full Text PDF

Aim: The aim of the present study was to comparatively evaluate the retention of complete dentures and oral health-related quality of life (OHRQoL) of patients with conventional and bioelectric impressions or transcutaneous electric nerve stimulation (TENS).

Materials And Methods: A total of thirty (n = 30) completely edentulous patients were randomly distributed into two groups: Group-C (n = 15) (Conventional) and Group-T (n = 15) (bioelectric). In Group C, border molding was performed using the manual manipulation of borders, and the final impression was made using zinc-oxide eugenol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!