Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems.

Lab Chip

Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2.

Published: December 2004

A one-step immunomagnetic separation technique was performed on a microfluidic platform for the isolation of specific cells from blood samples. The cell isolation and purification studies targeted T cells, as a model for low abundance cells (about 1:10,000 cells), with more dilute cells as the ultimate goal. T cells were successfully separated on-chip from human blood and from reconstituted blood samples. Quantitative polymerase chain reaction analysis of the captured cells was used to characterize the efficiency of T cell capture in a variety of flow path designs. Employing many (4-8), 50 microm deep narrow channels, with the same overall cross section as a single, 3 mm wide channel, was much more effective in structuring dense enough magnetic bead beds to trap cells in a flowing stream. The use of 8-multiple bifurcated flow paths increased capture efficiencies from approximately 20 up to 37%, when compared to a straight 8-way split design, indicating the value of ensuring uniform flow distribution into each channel in a flow manifold for effective cell capture. Sample flow rates of up to 3 microL min(-1) were evaluated in these capture beds.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b409366fDOI Listing

Publication Analysis

Top Keywords

cell capture
12
cells
8
blood samples
8
capture
5
flow
5
immunomagnetic cell
4
blood
4
capture blood
4
blood pcr
4
pcr analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!