A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. | LitMetric

Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer.

Clin Cancer Res

Discovery Research Laboratories, Nippon Shinyaku Co, Ltd., Kyoto, Japan; and Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Published: November 2004

Purpose: The RNA interference effect is an alternative to antisense DNA as an experimental method of down-regulating a specific target protein. Although the RNA interference effect, which is mediated by small interfering RNA (siRNA) or micro-RNA, has potential application to human therapy, the hydrodynamic method usually used for rapid administration of oligonucleotides is unsuitable for use in humans. In this study, we have investigated the antitumor activity of a synthetic siRNA, B717, which is sequence specific for the human bcl-2 oncogene, complexed with a novel cationic liposome, LIC-101.

Experimental Design: In a mouse model of liver metastasis, we administered B717/LIC-101 by bolus intravenous injection, adjusting the rate and volume of administration to what is feasible in human therapy. In a mouse model bearing prostate cancer in which the cells were inoculated under the skin, B717/LIC-101 was administered subcutaneously around the tumor.

Results: The B717/LIC-101 complex inhibited the expression of bcl-2 protein and the growth of tumor cell lines in vitro in a sequence-specific manner in the concentration range of 3 to 100 nmol/L. Furthermore, the complex had a strong antitumor activity when administered intravenously in the mouse model of liver metastasis. B717 (siRNA) was shown to be delivered to tumor cells in the mouse liver, but only when complexed with LIC-101. The complex also inhibited tumor cell growth in the mouse model bearing prostate cancer.

Conclusions: By combining siRNA with our cationic liposome, we overcame the difficulty of administering siRNA to animals in ways that can be applied in human therapy. Although our siRNA/liposome complex is not yet in clinical trials, it is expected to provide a novel siRNA therapy for cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-04-1049DOI Listing

Publication Analysis

Top Keywords

mouse model
16
antitumor activity
12
human therapy
12
small interfering
8
rna interference
8
cationic liposome
8
model liver
8
liver metastasis
8
model bearing
8
bearing prostate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!