AI Article Synopsis

  • A major goal of cancer research is to find specific biomarkers that can help diagnose cancer, guide drug development, and predict patient outcomes, but there are still many challenges with microarray data analysis.
  • This study proposes a non-parametric approach combined with noise filtering to more accurately identify genes that show different expression levels between normal and cancerous tissue in various tumor types.
  • The developed noise model not only reduces false positives but also allows for the integration of findings from multiple research groups, enhancing the overall analysis.

Article Abstract

Background: A major goal of cancer research is to identify discrete biomarkers that specifically characterize a given malignancy. These markers are useful in diagnosis, may identify potential targets for drug development, and can aid in evaluating treatment efficacy and predicting patient outcome. Microarray technology has enabled marker discovery from human cells by permitting measurement of steady-state mRNA levels derived from thousands of genes. However many challenging and unresolved issues regarding the acquisition and analysis of microarray data remain, such as accounting for both experimental and biological noise, transcripts whose expression profiles are not normally distributed, guidelines for statistical assessment of false positive/negative rates and comparing data derived from different research groups. This study addresses these issues using Affymetrix HG-U95A and HG-U133 GeneChip data derived from different research groups.

Results: We present here a simple non parametric approach coupled with noise filtering to identify sets of genes differentially expressed between the normal and cancer states in oral, breast, lung, prostate and ovarian tumors. An important feature of this study is the ability to integrate data from different laboratories, improving the analytical power of the individual results. One of the most interesting findings is the down regulation of genes involved in tissue differentiation.

Conclusions: This study presents the development and application of a noise model that suppresses noise, limits false positives in the results, and allows integration of results from individual studies derived from different research groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC538261PMC
http://dx.doi.org/10.1186/1471-2105-5-185DOI Listing

Publication Analysis

Top Keywords

noise filtering
8
analysis microarray
8
microarray data
8
data derived
8
derived groups
8
noise
5
data
5
filtering nonparametric
4
nonparametric analysis
4
data underscores
4

Similar Publications

In the recent era, Lithium ion batteries plays a significant role in EV industry due to their high specific energy density, power density, low self-discharge rate, and prolonged lifespan. Modeling the battery precisely and estimating its State of Charge with great precision is essential to improve the performance of the lithium-ion batteries. Though numerous methods has been proposed for estimating the SOC, accurate estimation approach is not proposed yet since all these approaches consider the discrete-time dynamics of the battery.

View Article and Find Full Text PDF

This paper addresses a non-interacting torque control strategy to decouple the d- and q-axis dynamics of a permanent magnet synchronous machine (PMSM). The maximum torque per ampere (MTPA) method is used to determine the reference currents for the desired torque. To realize the noninteracting control, knowledge concerning the inductances L and L of the electrical machine is necessary.

View Article and Find Full Text PDF

Efficacy of Segmentation for Hyperspectral Target Detection.

Sensors (Basel)

January 2025

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva blvd 1, Beer-Sheva 84105, Israel.

Algorithms for detecting point targets in hyperspectral imaging commonly employ the spectral inverse covariance matrix to whiten inherent image noise. Since data cubes often lack stationarity, segmentation appears to be an attractive preprocessing operation. Surprisingly, the literature reports both successful and unsuccessful segmentation cases, with no clear explanations for these divergent outcomes.

View Article and Find Full Text PDF

An FPGA-Based SiNW-FET Biosensing System for Real-Time Viral Detection: Hardware Amplification and 1D CNN for Adaptive Noise Reduction.

Sensors (Basel)

January 2025

Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.

Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.

View Article and Find Full Text PDF

This paper presents a Regeneration filter for reducing near Salt-and-Pepper (nS&P) noise in images, designed for selective noise removal while simultaneously preserving structural details. Unlike conventional methods, the proposed filter eliminates the need for median or other filters, focusing exclusively on restoring noise-affected pixels through localized contextual analysis in the immediate surroundings. Our approach employs an iterative processing method, where additional iterations do not degrade the image quality achieved after the first filtration, even with high noise densities up to 97% spatial distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!