Atg8 is essential for macropexophagy in Hansenula polymorpha.

Traffic

Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, 9750 AA Haren, the Netherlands.

Published: January 2005

We have isolated a peroxisome-degradation-deficient (pdd) mutant of the methylotrophic yeast Hansenula polymorpha via gene tagging mutagenesis. Sequencing revealed that the mutant was affected in the HpATG8 gene. HpAtg8 is a protein with high sequence similarity to both Pichia pastoris and Saccharomyces cerevisiae Atg8 and appeared to be essential for selective peroxisome degradation (macropexophagy) and nitrogen-limitation induced microautophagy. Fluorescence microscopy revealed that a GFP.Atg8 fusion protein was located close to the vacuole. After induction of macropexophagy, the GFP.Atg8 containing spot extended to engulf an individual peroxisome. In cells of a constructed deletion strain, sequestration of individual organelles was never completed; analysis of series of serial sections revealed that invariably a minor diaphragm-like opening remained. We hypothesize that H. polymorpha Atg8 facilitates sealing of the sequestering membranes during selective peroxisome degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0854.2004.00252.xDOI Listing

Publication Analysis

Top Keywords

hansenula polymorpha
8
selective peroxisome
8
peroxisome degradation
8
atg8 essential
4
essential macropexophagy
4
macropexophagy hansenula
4
polymorpha isolated
4
isolated peroxisome-degradation-deficient
4
peroxisome-degradation-deficient pdd
4
pdd mutant
4

Similar Publications

Harnessing of Sunflower Stalks by Hydrolysis and Fermentation with to Produce Biofuels.

Polymers (Basel)

December 2024

Department of Chemical, Environmental and Materials Engineering, Higher Polytechnical School of University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain.

A sequential valorization process of sunflower stalks was carried out using nitric acid (0.1-2 mol dm) as a hydrolytic agent and fermenting the hydrolysate of higher sugar concentration in the presence of the non-conventional yeast . Values reached for ethanol yield (0.

View Article and Find Full Text PDF

Emerging low-emission production technologies make ethanol an interesting substrate for yeast biotechnology, but information on growth rates and biomass yields of yeasts on ethanol is scarce. Strains of 52 Saccharomycotina yeasts were screened for growth on ethanol. The 21 fastest strains, among which representatives of the Phaffomycetales order were overrepresented, showed specific growth rates in ethanol-grown shake-flask cultures between 0.

View Article and Find Full Text PDF

Cervical cancer is the fourth most prevalent cancer among women globally, with Thai women ranking it as the third most common. At present, a prophylactic vaccine, containing virus-like particles (VLPs) of HPV L1 capsid protein, is widely recognized as one of the major prevention strategies for cervical cancer. Unfortunately, due to a low cross-protection among subtypes, protection against each HPV subtype requires vaccination with VLPs of that specific subtype.

View Article and Find Full Text PDF

STED super-resolution microscopy unveils the dynamics of Atg30 on yeast Pex3-labeled peroxisomes.

iScience

August 2024

Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.

Peroxisomes are dynamic organelles with important metabolic functions. Yeast Pex3 is a multifunctional membrane protein aiding in peroxisomal biogenesis, inheritance, and degradation (pexophagy), by interacting with process-specific factors. Using multicolor (live-cell) stimulated emission depletion (STED) nanoscopy, we studied the localization of Pex3 and its binding partners in Unlike confocal microscopy, STED allows resolving the membrane of tiny peroxisomes, enabling accurate measurements of the size of all Pex3-labeled peroxisomes.

View Article and Find Full Text PDF

Recombinant protein production in Komagataella phaffi (K. phaffi), a widely utilized host organism, can be optimized by enhancing the metabolic flux in the central carbon metabolism pathways. The methanol utilization pathway (MUT) during methanol-based growth plays a crucial role in providing precursors and energy for cell growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!