A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-throughput screening of genome fragments bound to differentially acetylated histones. | LitMetric

Although acetylation-deacetylation of histones contributes to regulation of gene expression, few methods have been available to determine the whole-genome histone acetylation profile in specific cells or tissues. We have now developed a genome-wide screening method, differential chromatin scanning (DCS), to isolate genome fragments embedded in histones subject to differential acetylation. This DCS screening was applied to a human gastric cancer cell line incubated with or without an inhibitor of histone deacetylase (HDAC) activity, resulting in the rapid identification of more than 250 genome fragments. Interestingly, a number of cancer-related genes were revealed to be the targets of HDAC in the cancer cells, including those for tumour protein 73 and cell division cycle 34. Such differential acetylation of histone was also shown to be linked to the regulation of transcriptional activity of the corresponding genes. Among the isolated genome fragments, 94% (32/34) of them were confirmed to be bound to differentially acetylated histones, and the genes corresponding to 78% (7/9) of them exhibited differential transcriptional activity consistent with the level of histone acetylation. With its high fidelity, the DCS method should open a possibility to rapidly compare the genome-wide histone acetylation profiles and to provide novel insights into molecular carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2443.2004.00804.xDOI Listing

Publication Analysis

Top Keywords

genome fragments
16
histone acetylation
12
bound differentially
8
differentially acetylated
8
acetylated histones
8
differential acetylation
8
transcriptional activity
8
histone
5
acetylation
5
high-throughput screening
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!