Uncultured microorganisms comprise the majority of the planet's biological diversity. Microorganisms represent two of the three domains of life and contain vast diversity that is the product of an estimated 3.8 billion years of evolution. In many environments, as many as 99% of the microorganisms cannot be cultured by standard techniques, and the uncultured fraction includes diverse organisms that are only distantly related to the cultured ones. Therefore, culture-independent methods are essential to understand the genetic diversity, population structure, and ecological roles of the majority of microorganisms. Metagenomics, or the culture-independent genomic analysis of an assemblage of microorganisms, has potential to answer fundamental questions in microbial ecology. This review describes progress toward understanding the biology of uncultured Bacteria, Archaea, and viruses through metagenomic analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev.genet.38.072902.091216 | DOI Listing |
Int Urol Nephrol
January 2025
Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.
Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.
Int J Radiat Oncol Biol Phys
January 2025
Providence Swedish Cancer Institute, Seattle, Washington.
Purpose: Standard therapy for breast cancer after breast-conserving surgery is radiation therapy (RT) plus hormone therapy (HT). For patients with a low-risk of recurrence, there is an interest in deescalating therapy.
Methods And Materials: A retrospective study was carried out for patients treated at the Swedish Cancer Institute from 2000 to 2015, aged 70 years or older, with pT1N0 or pT1NX estrogen receptor-positive and ERBB2-negative unifocal breast cancer without positive surgical margins, high nuclear grade, or lymphovascular invasion.
Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
BMC Genomics
January 2025
Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.
Background: Microsatellites are highly polymorphic repeat sequences ubiquitously interspersed throughout almost all genomes which are widely used as powerful molecular markers in diverse fields. Microsatellite expansions play pivotal roles in gene expression regulation and are implicated in various neurological diseases and cancers. Although much effort has been devoted to developing efficient tools for microsatellite identification, there is still a lack of a powerful tool for large-scale microsatellite analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!