A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography. | LitMetric

Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography.

Langmuir

School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom.

Published: December 2004

Nanosphere lithography (NSL) is a simple, cost-effective, and powerful technique capable of producing large-area arrays of ferromagnetic nanostructures with dimensions below 100 nm. These properties make NSL an attractive process for the fabrication of arrays of magnetic elements with applications in magnetic data storage. The main disadvantage with conventional NSL is that the monolayer of spheres always contains imperfections that are transferred to the resulting nanostructures. This can significantly affect the structural and magnetic properties of the fabricated array. In this paper we present a novel adaptation of NSL that reduces the effect of such defects on the resulting nanostructures. The technique also offers excellent control over the diameter, aspect ratio, and pitch of the fabricated elements. These properties are demonstrated through the fabrication of arrays of Ni elements of 210 nm diameter and arrays of Co elements with diameters between 200 and 320 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la048695vDOI Listing

Publication Analysis

Top Keywords

nanosphere lithography
8
fabrication arrays
8
arrays elements
8
arrays
5
fabrication large-area
4
large-area ferromagnetic
4
ferromagnetic arrays
4
arrays etched
4
etched nanosphere
4
lithography nanosphere
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!