Aah I is a 63-residue alpha-toxin isolated from the venom of the Buthidae scorpion Androctonus australis hector, which is considered to be the most dangerous species. We report here the first chemical synthesis of Aah I by the solid-phase method, using a Fmoc strategy. The synthetic toxin I (sAah I) was renatured in DMSO-Tris buffer, purified and subjected to thorough analysis and comparison with the natural toxin. The sAah I showed physico-chemical (CD spectrum, molecular mass, HPLC elution), biochemical (amino-acid composition, sequence), immunochemical and pharmacological properties similar to those of the natural toxin. The synthetic toxin was recognized by a conformation-dependent monoclonal anti-Aah I antibody, with an IC50 value close to that for the natural toxin. Following intracerebroventricular injection, the synthetic and the natural toxins were similarly lethal to mice. In voltage-clamp experiments, Na(v) 1.2 sodium channel inactivation was inhibited by the application of sAah I or of the natural toxin in a similar way. This work describes a simple protocol for the chemical synthesis of a scorpion alpha-toxin, making it possible to produce structural analogues in time.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.582DOI Listing

Publication Analysis

Top Keywords

natural toxin
16
chemical synthesis
12
synthesis scorpion
8
scorpion alpha-toxin
8
androctonus australis
8
australis hector
8
synthetic toxin
8
toxin saah
8
toxin
7
natural
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!