A number of studies indicate that coagulation proteases play significant roles in cancer biology. Melanoma is a highly metastatic cancer, and there is evidence that thrombin contributes to this aggressive pattern. However, few studies correlate this type of cancer with formation of the prothrombinase complex, which is responsible for conversion of prothrombin into thrombin in the coagulation system. The aim of this study was to investigate the assembly and regulation of prothrombinase complex on the murine melanoma cell line, B16F10. B16F10 cells were unable to activate prothrombin except when previously incubated with factor Xa. This effect was dependent on factor Xa binding to cell membranes, since no activation was detected with Gla-domainless factor Xa. The thrombin formation by B16F10-bound factor Xa was enhanced approximately 10 fold in the presence of factor Va, indicating the assembly of prothrombinase complex. Differently from platelets, B16F10-assembled prothrombinase complex was inhibited by prothrombin fragment 1 but not by fragment 2. In addition, bothrojaracin, a specific ligand of proexosite I on prothrombin, caused a significant decrease in the zymogen activation. Our data demonstrate that B16F10 melanoma cells generate thrombin by promoting assembly of the prothrombinase complex. This ability might be correlated with the increased metastatic potential of this cell line. Moreover, B16F10-assembled prothrombinase complex seems to be modulated in a different way from that found for the physiological complex assembled on platelets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.thromres.2004.08.001 | DOI Listing |
J Thromb Haemost
November 2024
Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. Electronic address:
Background: Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits factor (F)Xa, the TF-FVIIa-FXa complex, and early forms of the prothrombinase complex. Concizumab is a monoclonal antibody that blocks FXa inhibition by TFPI and reduces bleeding in hemophilia.
Objectives: To examine how concizumab impacts various reactions of TFPI to restore thrombin generation in hemophilia A using mathematical models.
Blood Res
October 2024
Daisy Hill Hospital, 5 Hospital Road, Newry, BT35 8DR, UK.
The classic coagulation cascade model of intrinsic and extrinsic coagulation pathways, i.e. contact activation pathway and tissue factor pathway, has been widely modified.
View Article and Find Full Text PDFJ Thromb Haemost
November 2024
Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom. Electronic address:
Background: Thrombin is produced by the prothrombinase complex, composed of factor (f)Xa and fVa on a phospholipid (PL) membrane surface. Snakes of the Elapidae family have venom versions of these factors that cause coagulopathy in prey. Group C venoms contain both fⅩa and fⅤa orthologues.
View Article and Find Full Text PDFJ Theor Biol
November 2024
Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia. Electronic address:
Prothrombinase complex, composed of coagulation factors Xa (FXa) and Va (FVa) is a major enzyme of the blood coagulation network that produces thrombin via activation of its inactive precursor prothrombin (FII) on the surface of phospholipid membranes. However, pathways and mechanisms of prothrombinase formation and substrate delivery are still discussed. Here we designed a novel mathematical model that considered different potential pathways of FXa or FII binding (from the membrane or from solution) and analyzed the kinetics of thrombin formation in the presence of a wide range of reactants concentrations.
View Article and Find Full Text PDFJ Thromb Haemost
October 2024
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!