Our study was devoted to determine in freely moving rats whether the increase in tissue concentration of tyrosine hydroxylase (TH) elicited by a single administration of RU 24722 could modify the catecholaminergic reactivity of neuronal processes present in the rostrolateral part of the pericerulean area (r-lPCA) in response to tail pinch. Catecholaminergic activity was monitored by measuring in vivo the concentration of dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) using microdialysis coupled to HPLC detection. In this study, the microdialysis probe was implanted at a sufficient distance from the lateral border of rostral nucleus locus ceruleus (LC) to avoid a large contribution of the noradrenergic cell bodies in the measurements performed. We first evidenced that DOPAC measured in the r-lPCA indicated the functional state of catecholaminergic metabolism in neuronal processes (dendrites and fibers) laying in this region. We also showed that the enhancement of TH protein concentration in the r-lPCA following RU 24722 treatment supported an increased in vivo catecholaminergic metabolism in this region. Furthermore, catecholaminergic metabolism response to tail pinch was potentiated in animals with greater TH tissue concentration. Thus, our study reveals that the modulation of both TH concentration and catecholaminergic metabolism in the r-lPCA may be critical in the functioning of cells and neuronal elements present in this region, notably in adaptive responses to noxious stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2004.07.091 | DOI Listing |
Neurosci Bull
December 2024
Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
In the face of constantly changing environments, the central nervous system (CNS) rapidly and accurately calculates the body's needs, regulates feeding behavior, and maintains energy homeostasis. The arcuate nucleus of the hypothalamus (ARC) plays a key role in this process, serving as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis. Agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis.
View Article and Find Full Text PDFJ Neuroinflammation
December 2024
Department of Neurosurgery, Stanford University School of Medicine, 1050 Arastradero Road, Building A, Palo Alto, Stanford, CA, 94304, United States of America.
Norepinephrine (NE) modulates cognitive function, arousal, attention, and responses to novelty and stress, and it also regulates neuroinflammation. We previously demonstrated behavioral and immunomodulatory effects of beta-adrenergic pharmacology in mouse models of Alzheimer's disease (AD). The current studies were designed to block noradrenergic signaling in 5XFAD mice through (1) chemogenetic inhibition of the locus coeruleus (LC), (2) pharmacologic blocking of β-adrenergic receptors, and (3) conditional deletion of β1- or β2-adrenergic receptors (adrb1 or adrb2) in microglia.
View Article and Find Full Text PDFBehav Brain Res
December 2024
Faculty of Health Sciences, University of Primorska, Izola, Slovenia. Electronic address:
Energy balance and body weight are tightly regulated by homeostatic and hedonic systems of the brain. These systems are ultimately finely tuned by hypothalamic and extrahypothalamic neurocircuitry that modulate feeding and the appetite signalling cascade. The hypothalamus has been extensively researched and its role in homeostatic regulation of energy balance is well established.
View Article and Find Full Text PDFAuton Neurosci
November 2024
Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA; Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA. Electronic address:
Sympathetic circuits including pre-sympathetic neurons in the ventrolateral medulla (VLM) and in the paraventricular nucleus (PVN) of the hypothalamus play an important role in the regulation of hepatic glucose metabolism. Despite the importance of central regulatory pathways, specific information regarding the circuits of liver-related neurons is limited. Here, we tested the hypothesis that PVN neurons are directly connected to spinally-projecting liver-related neurons in the VLM of mice.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Physiology, Department of Cellular and Translational Physiology, Ruhr-University Bochum, 44801 Bochum, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!