Capillary electrophoresis monitoring of halide impurities in ionic liquids.

Analyst

Laboratoire d'Electrochimie et de Chimie Analytique, UMR CNRS 7575, Ecole Nationale Supérieure de Chimie de Paris, France.

Published: December 2004

Quantification of impurities in ionic liquids is a crucial task in assessing the reliability of physical constants and solvent properties: taking into account the particularities of the ionic matrix, a simple routine method using capillary electrophoresis (CE) is developed to determine the halide content at the ppm level in water-immiscible ionic liquids.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b410509eDOI Listing

Publication Analysis

Top Keywords

ionic liquids
12
capillary electrophoresis
8
impurities ionic
8
electrophoresis monitoring
4
monitoring halide
4
halide impurities
4
ionic
4
liquids quantification
4
quantification impurities
4
liquids crucial
4

Similar Publications

The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.

View Article and Find Full Text PDF

Palladium catalysts form a cornerstone of modern chemistry with upmost scientific and industrial impact. Bulk palladium metal itself is chemically inert, and a sequence of chemical transformations has to be utilized to convert the metal into Pd pre-catalyst covered by ligands. However, the "cocktail" of catalysis concept discovered recently has shown that Pd systems can efficiently operate in catalysis without the necessity of a complicated and expensive pre-installed ligand environment.

View Article and Find Full Text PDF

The design of interfaces between nanostructured electrodes and advanced electrolytes is critical for realizing advanced electrochemical double-layer capacitors (EDLCs) that combine high charge-storage capacity, high-rate capability, and enhanced safety. Toward this goal, this work presents a novel and sustainable approach for fabricating ionogel-based electrodes using a renewed slurry casting method, in which the solvent is replaced by the ionic liquid (IL), namely 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI). This method avoids time-consuming and costly electrolyte-filling steps by integrating the IL directly into the electrode during slurry preparation, while improving the rate capability of EDLCs based on non-flammable ILs.

View Article and Find Full Text PDF

Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.

View Article and Find Full Text PDF

Supramolecular Ionic Gels for Stretchable Electronics and Future Directions.

ACS Mater Au

January 2025

Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.

Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!