BLADE-ON-PETIOLE1 encodes a BTB/POZ domain protein required for leaf morphogenesis in Arabidopsis thaliana.

Plant Cell Physiol

Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

Published: October 2004

The BLADE-ON-PETIOLE1 (BOP1) gene of Arabidopsis thaliana is required for proper leaf morphogenesis. BOP1 regulates leaf differentiation in a proximal-distal manner, and represses the expression of three class I knotted-like homeobox (knox) genes during leaf formation. Utilizing a map-based approach, we identified the molecular nature of the BOP1 gene, which encodes a BTB/POZ domain protein with ankyrin repeats. BOP1 is a member of a small gene family in Arabidopsis that includes the disease resistance regulatory protein NPR1. Insertions in and around BOP1 cause distinct lesions in leaf morphogenesis, revealing complex regulation of the locus. BOP1 transcripts are initially detectable in embryos, where they specifically localize to the base of the developing cotyledons near the SAM. During vegetative development, BOP1 is expressed in young leaf primordia and at the base of the rosette leaves on the adaxial side. During reproductive development, BOP1 transcripts are detected in young floral buds, and at the base of the sepals and petals. Our results indicate that BOP1 encodes a putative regulatory protein that modulates meristematic activity at discrete locations in developing lateral organs. This is the first report on a plant protein that plays a key role in morphogenesis with the distinctive combinatorial architecture of the BTB/POZ and ankyrin repeat domains.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pch201DOI Listing

Publication Analysis

Top Keywords

leaf morphogenesis
12
bop1
9
encodes btb/poz
8
btb/poz domain
8
domain protein
8
arabidopsis thaliana
8
bop1 gene
8
regulatory protein
8
bop1 transcripts
8
development bop1
8

Similar Publications

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.

View Article and Find Full Text PDF

Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally.

View Article and Find Full Text PDF

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Tuta absoluta is one of the most destructive pests of tomatoes. Chemical insecticides used to control this leafminer harm all organisms, increasing the risk to public health and the environment. Developing natural alternatives, such as bioinsecticides formulated from essential plant oils, is a key strategy to address this problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!