The genetic nature and biological effects of recombination between porcine endogenous retroviruses (PERV) were studied. An infectious molecular clone was generated from a high-titer, human-tropic PERV isolate, PERV-A 14/220 (B. A. Oldmixon, et al. J. Virol. 76:3045-3048, 2002; T. A. Ericsson et al. Proc. Natl. Acad. Sci. USA 100:6759-6764, 2003). To analyze this sequence and 15 available full-length PERV nucleotide sequences, we developed a sequence comparison program, LOHA(TM) to calculate local sequence homology between two sequences. This analysis determined that PERV-A 14/220 arose by homologous recombination of a PERV-C genome replacing an 850-bp region around the pol-env junction with that of a PERV-A sequence. This 850-bp PERV-A sequence encompasses the env receptor binding domain, thereby conferring a wide host range including human cells. In addition, we determined that multiple regions derived from PERV-C are responsible for the increased infectious titer of PERV-A 14/220. Thus, a single recombination event may be a fast and effective way to generate high-titer, potentially harmful PERV. Further, local homology and phylogenetic analyses between 16 full-length sequences revealed evidence for other recombination events in the past that give rise to other PERV genomes that possess the PERV-A, but not the PERV-B, env gene. These results indicate that PERV-A env is more prone to recombination with heterogeneous backbone genomes than PERV-B env. Such recombination events that generate more active PERV-A appear to occur in pigs rather frequently, which increases the potential risk of zoonotic PERV transmission. In this context, pigs lacking non-human-tropic PERV-C would be more suitable as donor animals for clinical xenotransplantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC533951 | PMC |
http://dx.doi.org/10.1128/JVI.78.24.13880-13890.2004 | DOI Listing |
Xenotransplantation
March 2016
Gene Transfer and Immunogenicity Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA.
Background: Porcine endogenous retrovirus (PERV) is an endogenous retrovirus that poses a risk of iatrogenic transmission in the context of pig-to-human xenotransplantation. The lack of a means to control PERV infection in the context of pig-to-human xenotransplantation is a major concern in the field. In this study, we set out to evaluate the ability of currently licensed anti-HIV drugs, and other types of anti-retroviral compounds, to inhibit PERV infection in vitro.
View Article and Find Full Text PDFJ Gen Virol
March 2009
MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK.
The potential risk of cross-species transmission of porcine endogenous retroviruses (PERV) to humans has slowed the development of xenotransplantation, using pigs as organ donors. Here, we show that PERVs are insensitive to restriction by divergent TRIM5alpha molecules despite the fact that they strongly restrict a variety of divergent lentiviruses. We also show that the human PERV A/C recombinant clone 14/220 reverse transcribes with increased efficiency in human cells, leading to significantly higher infectivity.
View Article and Find Full Text PDFJ Virol
December 2004
Wohl Virion Centre, Division of Infection of Immunity, University College London, 46 Cleveland St., London W1T 4JF, United Kingdom.
The genetic nature and biological effects of recombination between porcine endogenous retroviruses (PERV) were studied. An infectious molecular clone was generated from a high-titer, human-tropic PERV isolate, PERV-A 14/220 (B. A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!