Kaiso is a BTB/POZ transcription factor that functions in vitro as a transcriptional repressor of the matrix metalloproteinase gene matrilysin and the non-canonical Wnt signaling gene Wnt-11, and as an activator of the acetylcholine-receptor-clustering gene rapsyn. Similar to other BTB/POZ proteins (e.g. Bcl-6, PLZF, HIC-1), endogenous Kaiso localizes predominantly to the nuclei of mammalian cells. To date, however, the mechanism of nuclear import for most POZ transcription factors, including Kaiso, remain unknown. Here, we report the identification and characterization of a highly basic nuclear localization signal (NLS) in Kaiso. The functionality of this NLS was verified by its ability to target a heterologous beta-galactosidase/green-fluorescent-protein fusion protein to nuclei. The mutation of one positively charged lysine to alanine in the NLS of full-length Kaiso significantly inhibited its nuclear localization in various cell types. In addition, wild-type Kaiso, but not NLS-defective Kaiso, interacted directly with the nuclear import receptor Importin-alpha2 both in vitro and in vivo. Finally, minimal promoter assays using a sequence-specific Kaiso-binding-site fusion with luciferase as reporter demonstrated that the identified NLS was crucial for Kaiso-mediated transcriptional repression. The identification of a Kaiso NLS thus clarifies the mechanism by which Kaiso translocates to the nucleus to regulate transcription of genes with diverse roles in cell growth and development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.01541 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!