Sexual dimorphism in the permeability response of coronary microvessels to adenosine.

Am J Physiol Heart Circ Physiol

Dept. of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA.

Published: April 2005

Gender influences volume regulation via several mechanisms; whether these include microvascular exchange, especially in the heart, is not known. In response to adenosine (Ado), permeability (P(s)) to protein of coronary arterioles of female pigs decreases acutely. Whether Ado induces similar P(s) changes in arterioles from males or whether equivalent responses occur in coronary venules of either sex has not been determined. Hypotheses that 1) basal P(s) properties and 2) P(s) responses to vasoactive stimuli are sex independent were evaluated from measures of P(s) to two hydrophilic proteins, alpha-lactalbumin and porcine serum albumin (PSA), in arterioles and venules isolated from hearts of adult male and female pigs. Consistent with hypothesis 1, basal P(s) values of both microvessel types were independent of sex. Contrary to hypothesis 2, P(s) responses to Ado varied with sex, protein, and vessel type. Confirming earlier studies, Ado induced a approximately 20% decrease in P(s) to both proteins in coronary arterioles from females. In arterioles from males, Ado did not change P(s) for alpha-lactalbumin (P(s)(alpha-lactalb), 3 +/- 13%), whereas P(s) for PSA (P(s)(PSA)) decreased by 27 +/- 8% (P < 0.005). In venules from females, Ado elevated P(s)(PSA) by 44 +/- 20% (P < 0.05), whereas in those from males, Ado reduced P(s)(PSA) by 24 +/- 5% (P < 0.05). The variety of outcomes is consistent with transvascular protein and protein-carried solute flux being regulated by multiple sex-dependent mechanisms in the heart and provides evidence of differences in exchange homeostasis of males and females in health and, likely, disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3332336PMC
http://dx.doi.org/10.1152/ajpheart.01007.2004DOI Listing

Publication Analysis

Top Keywords

coronary arterioles
8
female pigs
8
arterioles males
8
males ado
8
pspsa +/-
8
ado
7
arterioles
5
sexual dimorphism
4
dimorphism permeability
4
permeability response
4

Similar Publications

Pericytes are essential for capillary stability and homeostasis, with impaired pericyte function linked to diseases like pulmonary arterial hypertension. Investigating pericyte biology has been challenging due to the lack of specific markers, making it difficult to distinguish pericytes from other stromal cells. Using bioinformatic analysis and RNAscope, we identified Higd1b as a unique gene marker for pericytes and subsequently generated a knock-in mouse line, Higd1b-CreERT2, that accurately labels pericytes in the lung and heart.

View Article and Find Full Text PDF

Combining In Vivo Two-Photon and Laser Speckle Microscopy With the Ex Vivo Capillary-Parenchymal Arteriole Preparation as a Novel Approach to Study Neurovascular Coupling.

Microcirculation

January 2025

Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.

Objective: Cerebral blood flow (CBF) decline is increasingly recognized as an area of importance for targeting neurodegenerative disorders, yet full understanding of the mechanisms that underlie CBF changes are lacking. Animal models are crucial for expanding our knowledge as methods for studying global CBF and neurovascular coupling in humans are limited and require expensive specialized scanners.

Methods: Use of appropriate animal models can increase our understanding of cerebrovascular function, so we have combined chronic cranial windows with in vivo two-photon and laser speckle microscopy and ex vivo capillary-parenchymal arteriole (CaPA) preparations.

View Article and Find Full Text PDF

Systemic and Cardiac Microvascular Dysfunction in Hypertension.

Int J Mol Sci

December 2024

Dipartimento di Biotecnologie e Scienze della Vita, ASST Sette Laghi, Università degli Studi dell'Insubria, 21100 Varese, Italy.

Hypertension exerts a profound impact on the microcirculation, causing both structural and functional alterations that contribute to systemic and organ-specific vascular damage. The microcirculation, comprising arterioles, capillaries, and venules with diameters smaller than 20 μm, plays a fundamental role in oxygen delivery, nutrient exchange, and maintaining tissue homeostasis. In the context of hypertension, microvascular remodeling and rarefaction result in reduced vessel density and elasticity, increasing vascular resistance and driving end-organ damage.

View Article and Find Full Text PDF

Coronary microvascular dysfunction (CMD) is a clinical syndrome of myocardial ischemia caused by structural and/or functional abnormalities of pre-coronary arterioles and arterioles. While genetics and other factors play a role in CMD etiology, the key pathogenic mechanism remains unclear. Currently, the diagnostic procedure for CMD is still cumbersome, and there is a lack of effective targeted interventions.

View Article and Find Full Text PDF
Article Synopsis
  • Coronary microvascular disease (CMVD) affects small blood vessels in the heart and can cause issues like ischemia or heart attacks without blocked arteries, leading to a need for better treatment options.
  • Current research in genetics, particularly through genome-wide association studies (GWAS) on coronary artery disease (CAD), has identified numerous genetic markers that could help understand and target therapies for CMVD.
  • The article suggests that more in-depth genetic studies specifically focused on CMVD are necessary, emphasizing the importance of diverse representation in research to further uncover its underlying mechanisms and potential treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!