This paper describes a sensitive method for the simultaneous quantification of eight commonly used grapevine fungicides in vineyard soils: cyprodinil, fludioxonil, metalaxyl, penconazole, pyrimethanil, procymidone, tebuconazole, and vinclozolin. The fungicides are extracted from the soil sample by sonication with water followed by shaking with ethyl acetate and are quantified by gas chromatography with mass spectrometry. Average extraction efficiencies in a sample of seven spiked, previously fungicide-free soils were > or =79% for all of the analytes, method precisions were > or =17%, and quantification limits were < or =50 microg/kg. However, because recoveries varied considerably from soil to soil, there is a need to control for soil matrix differences (mainly soil pH and exchangeable calcium content); as a consequence, soil fungicide contents must be quantified by the standard additions method. When the method was applied in this way to soil samples from vineyards belonging to the specified wine-growing region of Rias Baixas (Galicia, northwestern Spain) taken at the beginning of October (1 month after the crop's final treatment), levels of fludioxonil as high as 991 microg/kg were found, but at the start of the season (9 months after the previous crop's final treatment) only fludioxonil was detected at levels higher than its limit of quantification (45 and 52 microg/kg).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf0493019 | DOI Listing |
Toxins (Basel)
December 2024
Department of Crop Science, Laboratory of Plant Pathology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
Ochratoxin A (OTA) is a widely distributed mycotoxin and potent carcinogen produced by several fungal genera, but mainly by . Grape contamination occurs in vineyards during the period between veraison and pre-harvest, and it is the main cause of OTA's presence in wine. The aim of the current study was the evaluation of 6 chemical and 11 biological plant protection products (PPPs) and biocontrol agents in commercial vineyards of the two important Greek white wine varieties cv.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia.
In this study, we carried out large-scale leaf spot symptom observation on vineyards in the Krasnodar Krai of Russia and determined their distribution. The incidence and severity of leaf spot were higher on the Euro-American grapevine hybrids (Bianka, Levokumskij, Avgustin, Moldova, Pervenets Magaracha, Dunavski lazur). A total of 433 isolates that belonged to the genus were isolated from samples with leaf spot.
View Article and Find Full Text PDFPhytopathology
December 2024
Universitat Politècnica de València, Instituto Agroforestal Mediterráneo, Valencia, Comunitat Valenciana, Spain;
Powdery mildew (PM) disease causes serious losses in Mediterranean vineyards, where suitable environmental conditions promote conidial infections. The frequency and intensity of these infections are directly linked to the amount of primary inoculum, i.e.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy.
is the causal agent of Grapevine Downy Mildew (GDM), which is a devastating disease of grapevines in humid temperate regions. The most employed method for protecting grapevines against GDM is the application of chemical fungicides. In Spain, Carboxylic Acid Amides (CAAs) are a fungicide group currently utilized in GDM control.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy.
Currently, fungicides are widely used to control grapevine foliar diseases. This study explored the possibility of decreasing the use of fungicides to control these diseases using cover crops in the inter-row of vineyards. In small-scale experiments, we found that cover crops (namely horseradish ) were able to (i) reduce the numbers of airborne conidia of (originating from an inoculum source above the soil) escaping the cover canopy by >85% with respect to the base soil and (ii) reduce the number of raindrops impacting the soil by 46%-74%, depending on the cover crop height and rain-originated splash droplets that escaped from the ground by 75%-95%, which reduced splash-borne inoculum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!