We have previously shown that the addition of 4-methylthio-2-oxobutanoate (MTOB) to cultures of methionine dependent neoplastic cells which lack endogenous MTOB restores their capacity to grow in the absence of exogenous methionine. Transition state inhibitors of the MTOB transaminase,responsible for the transamination of MTOB to methionine, had also been designed and selected for their capacity to inhibit the proliferation of methionine dependent neoplastic cells but not that of normal cells in culture. We now show that the transition state analogue : L-methionine ethyl esterpyridoxal(MEEP) with a structure corresponding to the oxo acid receptor covalently linked to pyridoxamine and the amine donor analogue: D-aspartate beta hydroxamate (D-AH) are efficient inhibitors of MTOB transaminase. [3H] MEEP uptake into transformed HeLa cells is similar to that in normal MRC5 cells, yet growth inhibition is seem in the transformed but not in the normal cells.MEEP irreversibly inhibits the activity of this enzyme when added to HeLa cells in culture but not that of the purified rat liver enzyme, probably due to pyridoxal phosphate already bound in the active site. On the contrary, D-AH is a noncompetitive reversible inhibitor of the purified rat liver enzyme in vitro and also inhibits intracellular HeLa MTOB transaminase. Furthermore, in HeLa cells both inhibitors induce DNA strand breaks typical of apoptotic cell death. These results provide evidence that MTOB transaminase is a potential target for antiproliferative agents which could selectively affect methionine-dependent neoplastic cells. The transition state intermediale : MEEP as an amine acceptor analogue was found to be 20 fold more effective than D-AH as the amine donor analogue in inducing apoptosis.
Download full-text PDF |
Source |
---|
Nat Commun
December 2024
Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.
View Article and Find Full Text PDFNat Commun
December 2024
Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.
View Article and Find Full Text PDFNat Commun
December 2024
Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA.
Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!