In situ imaging and isolation of proteins using dsDNA oligonucleotides.

Nucleic Acids Res

Programme in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.

Published: November 2004

As proteomics initiatives mature, the need will arise for the multiple visualization of proteins and supramolecular complexes within their true context, in situ. Single-stranded DNA and RNA aptamers can be used for low resolution imaging of cellular receptors and cytoplasmic proteins by light microscopy (LM). These techniques, however, cannot be applied to the imaging of nuclear antigens as these single-stranded aptamers bind endogenous RNA and DNA with high affinity. To overcome this problem, we have developed a novel method for the in situ detection of proteins using double-stranded DNA oligonucleotides. To demonstrate this system we have utilized the prokaryotic DNA-binding proteins LacI and TetR as peptide tags to image fusion proteins in situ using dsDNA oligonucleotides encoding either the Lac or Tet operator. Using fluorescent and fluorogold dsDNA oligonucleotides, we localized within the nucleus a TetR-PML fusion protein within promyelocytic leukaemia protein (PML) bodies by LM and a LacI-SC35 fusion protein within nuclear speckles by correlative light and electron microscopy (LM/EM). Isolation of LacI-SC35 was also accomplished by using biotinylated dsDNA and streptavidin sepharose. The use of dsDNA oligonucleotides should complement existing aptamer in situ detection techniques by allowing the multiple detection and localization of nuclear proteins in situ and at high resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC534643PMC
http://dx.doi.org/10.1093/nar/gnh164DOI Listing

Publication Analysis

Top Keywords

dsdna oligonucleotides
16
situ detection
8
proteins situ
8
fusion protein
8
proteins
7
situ
6
dsdna
5
oligonucleotides
5
situ imaging
4
imaging isolation
4

Similar Publications

Anti-gene oligonucleotide clamps invade dsDNA and downregulate expression.

Mol Ther Nucleic Acids

December 2024

Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 14152 Huddinge, Stockholm, Sweden.

Anti-gene oligonucleotides belong to a group of therapeutic compounds, which, in contrast to antisense oligonucleotides, bind to DNA. Clamp anti-gene oligonucleotides bind through a double-stranded invasion mechanism. With two arms connected by a linker, they hybridize to one of the DNA strands forming Watson-Crick and Hoogsteen hydrogen bonds.

View Article and Find Full Text PDF

Spherical nucleic acids (SNAs) usually suffer from an undesired protein corona and disrupt the function of nucleic acids (e.g., aptamer), thereby compromising recognition and response to proteins in the biological environment.

View Article and Find Full Text PDF

Epidemic infections and spreading antibiotic resistance require diagnostic tests that can be rapidly adopted. To reduce the usually time-consuming adaptation of molecular diagnostic tests to changing targets, we propose the novel approach of a repurposable sensing electrode functionalization with a universal, target-independent oligonucleotide probe. In the liquid phase covering the electrode, the target sequence is amplified by MD LAMP (mediator-displacement loop-mediated isothermal amplification) releasing a generic methylene blue-labeled mediator, which specifically hybridizes to the solid-phase probe.

View Article and Find Full Text PDF

Controlling the Hierarchical Assembly of DNA-Based Hexagonal Microstructures.

Small

December 2024

Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.

This paper discusses the controlled morphology of hierarchical liquid crystalline DNA assemblies. Through a process of heating and slow cooling, double-stranded DNAs (dsDNAs) having 23 complementary bases and two base overhangs (a pair of 25mer oligonucleotides) spontaneously assemble into micro-sized hexagonal platelets in a solution containing poly(ethylene glycol) (PEG) and salt. Remarkably, the addition of a shorter dsDNA with AA/TT overhangs (a pair of 18mer oligonucleotides) to a PEG-salt solution of 25mer DNA with AA/TT overhangs results in the formation of molecular tubes, each with a central blockage.

View Article and Find Full Text PDF

An electrochemical aptasensor for the detection of bisphenol A based on triple signal amplification assisted by gold nanoparticles, hemin/G-quadruplex DNAzyme, and exonuclease I.

Mikrochim Acta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

A triple signal amplified electrochemical aptasensor for the detection of bisphenol A (BPA) was developed for the first time based on gold nanoparticles (AuNPs), hemin/G-quadruplex DNAzyme, and exonuclease I (Exo I) assisted amplification strategies. The BPA aptamer (Apt) hybridized with the capture probe (CP) was fixed on the gold electrode (GE) to form the double-stranded DNA (dsDNA) structure. When BPA was present, the Apt was detached from the GE surface by specific recognition between the BPA and Apt, forming BPA-Apt complexes in solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!