Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Incubation of rat pancreatic islets for 4-6 h with 100 micromol/l fatty acid-free BSA induced a 3- to 10-fold enhancement of insulin release to a subsequent challenge with 16.7 mmol/l glucose, without changing the typical biphasic pattern of the response. A similar enhancement was observed with other stimuli, such as leucine, depolarizing concentrations of KCl and tolbutamide, pointing to a general phenomenon and common mechanism for the augmentation. Norepinephrine completely blocked the stimulated response. The protein kinase C (PKC) inhibitor Ro 31-8220, which acts at the ATP-binding site and inhibits all PKC isoforms, strongly inhibited the enhancement of a subsequent glucose challenge when present during the BSA pretreatment period. In contrast, Go 6976, an inhibitor of conventional PKC isoforms, was without effect, even at the high concentration of 1 micromol/l. Preincubation with calphostin C, which competes for the diacylglycerol (DAG)-binding site, therefore inhibiting conventional, novel, and PKC isoforms of the PKD type, completely abolished the enhancing effect of the BSA but did not affect secretion in islets treated with 10 micromol/l fatty acid-free BSA. We conclude that the remarkable enhancement of insulin release is due to a change in glucose signaling and activation of a novel PKC isoform or a DAG-binding protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/diabetes.53.12.3152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!