A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Massive augmentation of stimulated insulin secretion induced by fatty acid-free BSA in rat pancreatic islets. | LitMetric

Massive augmentation of stimulated insulin secretion induced by fatty acid-free BSA in rat pancreatic islets.

Diabetes

Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.

Published: December 2004

Incubation of rat pancreatic islets for 4-6 h with 100 micromol/l fatty acid-free BSA induced a 3- to 10-fold enhancement of insulin release to a subsequent challenge with 16.7 mmol/l glucose, without changing the typical biphasic pattern of the response. A similar enhancement was observed with other stimuli, such as leucine, depolarizing concentrations of KCl and tolbutamide, pointing to a general phenomenon and common mechanism for the augmentation. Norepinephrine completely blocked the stimulated response. The protein kinase C (PKC) inhibitor Ro 31-8220, which acts at the ATP-binding site and inhibits all PKC isoforms, strongly inhibited the enhancement of a subsequent glucose challenge when present during the BSA pretreatment period. In contrast, Go 6976, an inhibitor of conventional PKC isoforms, was without effect, even at the high concentration of 1 micromol/l. Preincubation with calphostin C, which competes for the diacylglycerol (DAG)-binding site, therefore inhibiting conventional, novel, and PKC isoforms of the PKD type, completely abolished the enhancing effect of the BSA but did not affect secretion in islets treated with 10 micromol/l fatty acid-free BSA. We conclude that the remarkable enhancement of insulin release is due to a change in glucose signaling and activation of a novel PKC isoform or a DAG-binding protein.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.53.12.3152DOI Listing

Publication Analysis

Top Keywords

fatty acid-free
12
acid-free bsa
12
pkc isoforms
12
rat pancreatic
8
pancreatic islets
8
micromol/l fatty
8
enhancement insulin
8
insulin release
8
novel pkc
8
bsa
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!