Effect of conjugated linoleic acid isomers on insulin resistance and mRNA levels of genes regulating energy metabolism in high-fat-fed rats.

Nutrition

Division of Metabolic Disease, Department of Biomedical Sciences, National Institute of Health, Nokbun-dong, Eunpyung-ku, Seoul, Korea.

Published: April 2005

Objective: We investigated the effects of specific conjugated linoleic acid (CLA) isomers on glucose metabolism and insulin resistance and on mRNA levels of genes important in glucose and lipid metabolism.

Methods: Sprague-Dawley rats were fed for 8 wk on a high-fat diet (45% kcal from fat) or one of three CLA-supplemented diets (1% CLA) containing differing isomers of CLA, including a mixture of CLAs (CLA mix), cis-9, trans-11-CLA (C9,T11-CLA), or trans-10, cis-12-CLA (T10,C12-CLA).

Results: Compared with the high-fat group, all the CLA groups had enhanced glucose tolerance. Insulin resistance index was significantly lower in the CLA-treated groups. No significant difference could be observed in the level of serum lipids between groups and in the activities of phosphoenolpyruvate carboxylase, glucose-6-phosphatase, and glucokinase. However, C9,T11-CLA and T10,C12-CLA significantly increased acyl coenzyme A oxidase mRNA in skeletal muscle. In addition, C9,T11-CLA increased hepatic acyl coenzyme A oxidase mRNA and skeletal muscle uncoupling protein-2 mRNA. The CLA mix showed intermediate effects on the levels of these genes.

Conclusions: The addition of all types of CLA to Sprague-Dawley rats fed a high-fat diet can decrease insulin resistance. Possible mechanisms are increased fat oxidation and energy expenditure by increasing acyl coenzyme A oxidase and uncoupling protein-2 mRNA in the liver and/or skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nut.2004.08.009DOI Listing

Publication Analysis

Top Keywords

insulin resistance
16
acyl coenzyme
12
coenzyme oxidase
12
skeletal muscle
12
conjugated linoleic
8
linoleic acid
8
resistance mrna
8
mrna levels
8
levels genes
8
sprague-dawley rats
8

Similar Publications

Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle.

View Article and Find Full Text PDF

JMJD8 regulates adipocyte hypertrophy through the interaction with Perilipin 2.

Diabetes

January 2025

Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, US.

Adipocyte hypertrophy significantly contributes to insulin resistance and metabolic dysfunction. Our previous research established JMJD8 as a mediator of insulin resistance, noting its role in promoting adipocyte hypertrophy within an autonomous adipocyte context. Nevertheless, the precise mechanisms underlying this phenomenon remained elusive.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia due to insufficient insulin secretion or action. Contributing factors include genetic predisposition, obesity, family history, inactivity, and environmental risks. Type 2 diabetes mellitus (T2DM), the most common form, involves impaired insulin secretion by pancreatic β-cells, leading to insulin resistance.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) is among the modifiable risk factors for Alzheimer's disease (AD) and ranks among the leading chronic diseases globally. It is characterized by elevated blood glucose levels and insulin resistance, which over time may impair memory performance. More so, saliva appears to be a promising biomarker for the diagnosis of AD since conventional methods appear invasive and expensive in the country.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia and insulin resistance. Historically, it is linked to greater cognitive decline and risk of Alzheimer's dementia. Although deregulations in the insulin signaling pathway have been identified, further investigation is needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!