DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells.

Adv Drug Deliv Rev

Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich (ETH), Winterthurerstrerstrasse 190, CH-8057 Zurich, Switzerland.

Published: January 2005

This paper provides a review of the role of dendritic cells (DC) in microparticle-mediated immune response and the advantages of associating DNA to microparticles in order to increase the potency of DNA vaccination in vivo. To begin with, different methods for the preparation of DNA-loaded microparticle with poly(lactide) (PLA)/poly(lactide-co-glycolide) (PLGA) polymers are presented. Further, the effects of DNA-loaded microparticles on DC in vitro are extensively examined including transfection and stimulation of DC, a key feature of the immune response. Finally, in vivo tracking of DNA-loaded microparticles and induction of immune responses upon DNA-loaded microparticle administration in different animal models and with various routes of administration are reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2004.09.010DOI Listing

Publication Analysis

Top Keywords

dendritic cells
8
immune response
8
dna-loaded microparticle
8
dna-loaded microparticles
8
dna-loaded
5
dna-loaded biodegradable
4
microparticles
4
biodegradable microparticles
4
microparticles vaccine
4
vaccine delivery
4

Similar Publications

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Copper Chelate Targeting Externalized Phosphatidylserine Inhibits PD-L1 Expression and Enhances Cancer Immunotherapy.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.

Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.

View Article and Find Full Text PDF

Background/objectives: GCL1815 is a lactic acid bacterium thought to activate dendritic cells. This randomized, placebo-controlled, double-blind study aimed to evaluate the effects of GCL1815 on human dendritic cells and the onset of the common cold.

Methods: Two hundred participants were divided into two groups and took capsules containing either six billion GCL1815 cells or placebo for 8 weeks.

View Article and Find Full Text PDF

Regulation of Age-Related Lipid Metabolism in Ovarian Cancer.

Int J Mol Sci

January 2025

Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA.

The mortality rate of ovarian cancer (OC) remains the highest among female gynecological malignancies. Advanced age is the highest risk factor for OC development and progression, yet little is known about the role of the aged tumor microenvironment (TME). We conducted RNA sequencing and lipidomic analysis of young and aged gonadal adipose tissue from rat xenografts before and after OC formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!